Skip to main content

Advertisement

Log in

Facile synthesis of MnO2@C@Ni(OH)2 core–shell nanowires for high-performance supercapacitor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

One-dimensional MnO2@C@Ni(OH)2 core–shell nanowires were successfully synthesized by simple hydrothermal and chemical bath method. The MnO2@C@Ni(OH)2 core–shell nanowires showed a high capacitance of 1595.4 F g−1 at 1 A g−1 as supercapacitor electrode material. After 6000 cycles, the cyclic reservation rate was about 82.3%, informing the good cycling stability. The asymmetric supercapacitor composed of MnO2@C@Ni(OH)2 as positive electrode and activated carbon as negative electrode exhibited high energy density of 39.78 Wh kg−1. This research provides that the fabricated MnO2@C@Ni(OH)2 core–shell nanowires will be the promising supercapacitors materials in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Hussain, M. Hassan, M.S. Javed, A. Shaheen, S.S. Ahmad Shah, M.T. Nazir, T. Najam, A.J. Khan, X. Zhang, G. Liu, Distinctive flower-like CoNi2S4 nanoneedle arrays (CNS–NAs) for superior supercapacitor electrode performances. Ceram. Int. 46(16), 25942–25948 (2020)

    Article  CAS  Google Scholar 

  2. S. Hussain, A.J. Khan, M. Arshad, M.S. Javed, A. Ahmad, S.S. Ahmad Shah, M.R. Khan, S. Akram, S. Zulfiqar, S. Ali, Z.A. Alothman, G. Liu, A. Shaheen, G. Qiao, Charge storage in binder-free 2D-hexagonal CoMoO4 nanosheets as a redox active material for pseudocapacitors. Ceram. Int. 47(6), 8659–8667 (2021)

    Article  CAS  Google Scholar 

  3. S. Hussain, X. Yang, M.K. Aslam, A. Shaheen, M.S. Javed, N. Aslam, B. Aslam, G. Liu, G. Qiao, Robust TiN nanoparticles polysulfide anchor for Li–S storage and diffusion pathways using first principle calculations. Chem. Eng. J. 391, 123595 (2020)

    Article  CAS  Google Scholar 

  4. P. Yang, W. Mai, Flexible solid-state electrochemical supercapacitors. Nano Energy 8, 274–290 (2014)

    Article  CAS  Google Scholar 

  5. M. Salanne, B. Rotenberg, K. Naoi, K. Kaneko, P.L. Taberna, C.P. Grey, B. Dunn, P. Simon, Efficient storage mechanisms for building better supercapacitors. Nat. Energy 1(6), 16070 (2016)

    Article  CAS  Google Scholar 

  6. R. Wang, Y. Sui, S. Huang, Y. Pu, P. Cao, High-performance flexible all-solid-state asymmetric supercapacitors from nanostructured electrodes prepared by oxidation-assisted dealloying protocol. Chem. Eng. J. 331, 527–535 (2018)

    Article  CAS  Google Scholar 

  7. Y.J. Yang, W. Li, Hierarchical nanoflake-assembled flower-like NiCo double hydroxide@NiC2O4 microspheres for high-performance supercapacitor. Mater. Technol. 34(10), 571–580 (2019)

    Article  CAS  Google Scholar 

  8. Y. Shao, M.F. El-Kady, J. Sun, Y. Li, Q. Zhang, M. Zhu, H. Wang, B. Dunn, R.B. Kaner, Design and mechanisms of asymmetric supercapacitors. Chem. Rev. 118(18), 9233–9280 (2018)

    Article  CAS  Google Scholar 

  9. X. Feng, J. Ning, D. Wang, J. Zhang, M. Xia, Y. Wang, Y. Hao, Heterostructure arrays of NiMoO4 nanoflakes on N-doping of graphene for high-performance asymmetric supercapacitors. J. Alloys Compd. 816, 152625 (2020)

    Article  CAS  Google Scholar 

  10. Q. Li, W. Lu, Z. Li, J. Ning, Y. Zhong, Y. Hu, Hierarchical MoS2/NiCo2S4@C urchin-like hollow microspheres for asymmetric supercapacitors. Chem. Eng. J. 380, 122544 (2020)

    Article  CAS  Google Scholar 

  11. Z. Niu, Y. Zhang, Y. Zhang, X. Lu, J. Liu, Enhanced electrochemical performance of three-dimensional graphene/carbon nanotube composite for supercapacitor application. J. Alloys Compd. 820, 153114 (2020)

    Article  CAS  Google Scholar 

  12. X.X. Liu, R. Wu, Y. Wang, S.H. Xiao, Q. He, X.B. Niu, D.J. Blackwood, J.S. Chen, Self-supported core/shell Co3O4@Ni3S2 nanowires for high-performance supercapacitors. Electrochim. Acta 311, 221–229 (2019)

    Article  CAS  Google Scholar 

  13. S. Hussain, N. Ullah, Y. Zhang, A. Shaheen, M.S. Javed, L. Lin, S. Zulfiqar, S.B. Shah, G. Liu, G. Qiao, One-step synthesis of unique catalyst Ni9S8@C for excellent MOR performances. Int. J. Hydrog. Energy 44(45), 24525–24533 (2019)

    Article  CAS  Google Scholar 

  14. S. Hussain, M.S. Javed, S. Asim, A. Shaheen, A.J. Khan, Y. Abbas, N. Ullah, A. Iqbal, M. Wang, G. Qiao, S. Yun, Novel gravel-like NiMoO4 nanoparticles on carbon cloth for outstanding supercapacitor applications. Ceram. Int. 46(5), 6406–6412 (2020)

    Article  CAS  Google Scholar 

  15. F. Chen, H. Wang, S. Ji, B.G. Pollet, R. Wang, Hierarchical core–shell structured CoNi2S4/Ni3S2@Ni(OH)2 nanosheet arrays as electrode for electrochemical energy storage. J. Alloys Compd. 785, 684–691 (2019)

    Article  CAS  Google Scholar 

  16. H. Sun, J. Pan, X. Yan, W. Shen, W. Zhong, X. Cheng, MnO2 nanoneedles loaded on silicon oxycarbide-derived hierarchically porous carbon for supercapacitor electrodes with enhanced electrochemical performance. Ceram. Int. 45(18), 24802–24810 (2019)

    Article  CAS  Google Scholar 

  17. W. Wang, L. Lu, Y. Xie, X. Mei, Y. Tang, W. Wu, R. Liang, Tailoring the surface morphology and nanoparticle distribution of laser-induced graphene/Co3O4 for high-performance flexible microsupercapacitors. Appl. Surf. Sci. 504, 144487 (2020)

    Article  CAS  Google Scholar 

  18. H. Xuan, Y. Guan, X. Han, X. Liang, Z. Xie, P. Han, Y. Wu, Hierarchical MnCo-LDH/rGO@NiCo2S4 heterostructures on Ni foam with enhanced electrochemical properties for battery-supercapacitors. Electrochim. Acta 335, 135691 (2020)

    Article  CAS  Google Scholar 

  19. N. Zhao, H. Fan, M. Zhang, C. Wang, X. Ren, H. Peng, H. Li, X. Jiang, X. Cao, Preparation of partially-cladding NiCo-LDH/Mn3O4 composite by electrodeposition route and its excellent supercapacitor performance. J. Alloys Compd. 796, 111–119 (2019)

    Article  CAS  Google Scholar 

  20. Y. Zhu, Q. Zong, Q. Zhang, H. Yang, W. Du, Q. Wang, J. Zhan, H. Wang, Ultra-long lifespan asymmetrical hybrid supercapacitor device based on hierarchical NiCoP@C@LDHs electrode. Electrochim. Acta 334, 135589 (2020)

    Article  CAS  Google Scholar 

  21. S. Li, L.L. Yu, Y.T. Shi, J. Fan, R.B. Li, G.D. Fan, W.L. Xu, J.T. Zhao, Greatly enhanced Faradic capacities of 3D porous Mn3O4/G composites as lithium-ion anodes and supercapacitors by C-O–Mn bonding. ACS Appl. Mater. Interfaces 11(10), 10178–10188 (2019)

    Article  CAS  Google Scholar 

  22. B. Ren, M. Fan, X. Yang, L. Wang, H. Yu, 3D Hierarchical structure electrodes of MnO2 nanosheets decorated on needle-like NiCo2O4 nanocones on Ni foam as a cathode material for asymmetric supercapacitors. ChemistrySelect 4(19), 5641–5650 (2019)

    Article  CAS  Google Scholar 

  23. G. Manibalan, Y. Govindaraj, J. Yesuraj, P. Kuppusami, G. Murugadoss, R. Murugavel, M. Rajesh Kumar, Facile synthesis of NiO@Ni(OH)2–alpha-MoO3 nanocomposite for enhanced solid-state symmetric supercapacitor application. J. Colloid Interface Sci. 585, 505–518 (2020)

    Article  Google Scholar 

  24. Z. Ma, F. Jing, Y. Fan, L. Hou, L. Su, L. Fan, G. Shao, High-stability MnOx nanowires@C@MnOx nanosheet core–shell heterostructure pseudocapacitance electrode based on reversible phase transition mechanism. Small 15(20), e1900862 (2019)

    Article  Google Scholar 

  25. W. Wu, P. Xia, Y. Xuan, R. Yang, M. Chen, D. Jiang, Hierarchical CoO@Ni(OH)2 core–shell heterostructure arrays for advanced asymmetric supercapacitors. Nanotechnology 31(40), 405705 (2020)

    Article  CAS  Google Scholar 

  26. H. Cheng, S. Zhao, F. Yi, A. Gao, D. Shu, Z. Ao, S. Huang, X. Zhou, C. He, S. Li, D. Zeng, Supramolecule-assisted synthesis of in situ carbon-coated MnO2 nanosphere for supercapacitors. J. Alloys Compd. 779, 550–556 (2019)

    Article  CAS  Google Scholar 

  27. Y.-L. Liu, C. Yan, G.-G. Wang, H.-Y. Zhang, L.-Y. Dang, B.-W. Wu, Z.-Q. Lin, X.-S. An, J.-C. Han, Achieving ultrahigh capacity with self-assembled Ni(OH)2 nanosheet-decorated hierarchical flower-like MnCo2O4.5 nanoneedles as advanced electrodes of battery–supercapacitor hybrid devices. ACS Appl. Mater. Interfaces 11(10), 9984–9993 (2019)

    Article  CAS  Google Scholar 

  28. J. Li, Y. Liu, W. Cao, N. Chen, Rapid in situ growth of β-Ni(OH)2 nanosheet arrays on nickel foam as an integrated electrode for supercapacitors exhibiting high energy density. Dalton Trans. 49(15), 4956–4966 (2020)

    Article  CAS  Google Scholar 

  29. L.N. Xu, H. Zhang, J. Li, X. Guo, H. Sun, Y.A. Li, T. Wu, Designing core–shell Ni(OH)2@CuO nanowire arrays on 3D copper foams for high-performance asymmetric supercapacitors. ChemElectroChem 6(21), 5462–5468 (2019)

    Article  CAS  Google Scholar 

  30. M. Zhang, Y. Chen, D. Yang, J. Li, High performance MnO2 supercapacitor material prepared by modified electrodeposition method with different electrodeposition voltages. J. Energy Storage 29, 101363 (2020)

    Article  Google Scholar 

  31. L. Zhang, P. Cai, Z. Wei, T. Liu, J. Yu, A.A. Al-Ghamdi, S. Wageh, Synthesis of reduced graphene oxide supported nickel-cobalt-layered double hydroxide nanosheets for supercapacitors. J. Colloid Interface Sci. 588, 637–645 (2021)

    Article  CAS  Google Scholar 

  32. H.X. Chen, Y. Gui, Rational design of nanorod-supported Ni3S2 nanosheet array for advanced asymmetric pseudocapacitor with a great energy density. J. Mater. Sci. Mater. Electron. 32(12), 16866–16880 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Natural Science Foundation of Anhui Province (Nos. 2008085MB55, 1908085MB32) and Project of Innovation and Entrepreneurship of College Students of Anhui Normal University (Nos. S202010370171, S202010370601).

Author information

Authors and Affiliations

Authors

Contributions

YP: Software, Investigation, Validation, Formal analysis, Visualization, Writing. YY: Validation, Formal analysis, Visualization. FR: Software, Validation, Formal analysis, Visualization, Writing—Original Draft. XH: Software, Validation. QZ: Software. ZX: Software. XW: Conceptualization, Visualization, Investigation, Writing—Review and Editing, Supervision.

Corresponding author

Correspondence to Xiuhua Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2377 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Y., Yang, Y., Rong, F. et al. Facile synthesis of MnO2@C@Ni(OH)2 core–shell nanowires for high-performance supercapacitor. J Mater Sci: Mater Electron 33, 5192–5200 (2022). https://doi.org/10.1007/s10854-022-07707-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-07707-x

Navigation