Skip to main content
Log in

Synthesis, optoelectronic and thermal characterization of PMMA-MWCNTs nanocomposite thin films incorporated by ZrO2 NPs

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

PMMA polymer doped by multi-walled carbon nanotubes (MWCNTs) has attracted much attention as promising materials for photovoltaic and optoelectronic applications. The undoped poly(methyl methacrylate) (PMMA) and PMMA/MWCNTs nanocomposite films doped with varying concentrations of Zirconium dioxide nanoparticles (ZrO2 NPs) are synthesized using the casting method. It is found that the transmittance (\(T\%\)) decreases significantly as wt% = 5% of MWCNTs is injected into PMMA matrix. In addition, increasing the concentration of ZrO2 NPs into PMMA- MWCNTs nanocomposite thin films results in a further reduction of the transmittance and a further increase of the reflectance (\(R\%\)). The optical band gap energy (Eg) of PMMA-MWCNTs/ZrO2 NPs decreases from 4.063 \(eV\) to 3.845 \(eV\) upon injection of 5% of MWCNTs and gradually increasing the ZrO2 concentration in PMMA matrix. Furthermore, other essential optical parameters are estimated using different classical models such as Drude, Spitzer-Fan, Sellmeier, and Wemple–DiDomenico (WDD). Interestingly, thermal stability of PMMA-MWCNTs nanocomposite films is enhanced dramatically upon increasing the content of ZrO2 NPs. The synthesized nanocomposite thin films could be potential candidates for fabrication realistic scaled optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Materials described in this manuscript, including all relevant raw data, will be freely available to any researcher wishing to use them for non-commercial purposes, without breaching participant confidentiality. The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. V. Anju, S.K.J.P. Narayanankutty, Impact of Bis-(3-triethoxysilylpropyl) tetrasulphide on the properties of PMMA/Cellulose composite. Polymer 119, 224–237 (2017)

    Article  CAS  Google Scholar 

  2. P. Maji, R.B. Choudhary, Structural, electrical and optical properties of silane-modified ZnO reinforced PMMA matrix and its catalytic activities. J Non-Crystalline Sol 456, 40–48 (2017)

    Article  CAS  Google Scholar 

  3. G. Soni, R.K.J.O. Jangir, Effect of temperature nano graphite doped polymethylmethacrylate (PMMA) composite flexible thin films prepared by solution casting: Synthesis, optical and electrical properties. Optik 226, 165915 (2021)

    Article  CAS  Google Scholar 

  4. B.A. Nieto-Díaz et al., Enhanced lifetime of organic photovoltaic diodes achieved by blending with PMMA: Impact of morphology and Donor: Acceptor combination. Sol. Energy Mater. Sol. Cells 219, 110765 (2021)

    Article  Google Scholar 

  5. Y.-H. Li, X.-Y. Shang, Y.J.J. Li, Fabrication and characterization of TiMoCu/PMMA composite for biomedical application. Mater Lett 270, 127744 (2020)

    Article  CAS  Google Scholar 

  6. R. R. Bhosale, H. V. Gangadharappa, R. A. M. Osmani, D. V. J. D. D. Gowda, and T. Research, Design and development of polymethylmethacrylate-grafted gellan gum (PMMA-g-GG)-based pH-sensitive novel drug delivery system for antidiabetic therapy. Drug Deliv. Transl. Res. 10, 1002–1018 (2020)

    Article  Google Scholar 

  7. G. Shanthini et al., "Physical and biological properties of the ion beam irradiated PMMA-based composite films. Appl. Surf. Sci. 329, 116–126 (2015)

    Article  CAS  Google Scholar 

  8. H. Van Ngoc, Y. Qian, S.K. Han, PMMA-etching-free transfer of wafer-scale chemical vapor deposition two-dimensional atomic crystal by a water soluble polyvinyl alcohol polymer method. Sci Rep 6(1), 1–9 (2016)

    Google Scholar 

  9. G. Socol et al., Hydroxyapatite thin films synthesized by pulsed laser deposition and magnetron sputtering on PMMA substrates for medical applications. Mater. Sci. Engin. 169, 159–168 (2010)

    Article  CAS  Google Scholar 

  10. M.S. Rao et al., "Low-temperature sol-gel ZrHfO2-PMMA hybrid dielectric thin-films for metal oxide TFTs. J Non-Crystalline Solids 502, 152–158 (2018)

    Article  Google Scholar 

  11. F. Garibay-Martínez, M. S. Rao, O. Cortázar-Martínez, A. Hurtado-Macías, M. Quevedo-López, and R. J. J. o. N.-C. S. Ramírez-Bon, "Optical, mechanical and dielectric properties of sol-gel PMMA-GPTMS-ZrO2 hybrid thin films with variable GPTMS content," vol. 563, p. 120803, 2021.

  12. R. Sengwa, P.J.O.M. Dhatarwal, "Polymer nanocomposites comprising PMMA matrix and ZnO, SnO2, and TiO2 nanofillers: a comparative study of structural, optical, and dielectric properties for multifunctional technological applications. Opt. Mater. 113, 110837 (2021)

    Article  CAS  Google Scholar 

  13. Y. Yang, M.C. Gupta, K.L. Dudley, Novel carbon nanotube− polystyrene foam composites for electromagnetic interference shielding. Nano Lett. 5(11), 2131–2134 (2005)

    Article  CAS  Google Scholar 

  14. A. Hezma, I. Elashmawi, E. Abdelrazek, A. Rajeh, M. Kamal, "Enhancement of the thermal and mechanical properties of polyurethane/polyvinyl chloride blend by loading single walled carbon nanotubes. Progress in Natural Science: Materials International 27(3), 338–343 (2017)

    Article  CAS  Google Scholar 

  15. L. Valentini et al., Dielectric behavior of epoxy matrix/single-walled carbon nanotube composites. Compos. Sci. Technol. 64(1), 23–33 (2004)

    Article  CAS  Google Scholar 

  16. S.M. Shang, W. Zeng, X.M. Tao, "Highly stretchable conductive polymer composited with carbon nanotubes and nanospheres. Advanced Materials Research 123, 109–112 (2010)

    Article  Google Scholar 

  17. E. Abdelrazek, I. Elashmawi, A. Hezma, A. Rajeh, M.J.P.B.C.M. Kamal, "Effect of an encapsulate carbon nanotubes (CNTs) on structural and electrical properties of PU/PVC nanocomposites. Physica B 502, 48–55 (2016)

    Article  CAS  Google Scholar 

  18. E. Nikoomanzari, A. Fattah-alhosseini, M.R.P. Alamoti, M. Keshavarz, Effect of ZrO2 nanoparticles addition to PEO coatings on Ti–6Al–4V substrate: Microstructural analysis, corrosion behavior and antibacterial effect of coatings. Hank’s physiological solution 46(9), 13114–13124 (2020)

    CAS  Google Scholar 

  19. M.N. Tahir et al., Facile synthesis and characterization of monocrystalline cubic ZrO2 nanoparticles. Solid State Sci. 9(12), 1105–1109 (2007)

    Article  CAS  Google Scholar 

  20. K. Matsuura, K. Kuboyama, T.J.P.J. Ougizawa, "Effect of tetrahydrofuran on poly (methyl methacrylate) and silica in the interfacial regions of polymer nanocomposites. Polym. J. 52(10), 1203–1210 (2020)

    Article  CAS  Google Scholar 

  21. J. E. J. N. Y. Mark, "Polymer Data Handbook: Oxford University Press," 1999.

  22. Y. Khairy, H.E. Ali, I. Yahia, H.J.O. Zahran, "Facile design of a CUT-OFF laser power attenuation using safranin O-doped PMMA polymeric composite films: Optical spectroscopy and dielectric properties. J Mater Scivol. 219, 164943 (2020)

    CAS  Google Scholar 

  23. H. Li, Y. Xiao, G. Han, M. Li, Honeycomb-like polypyrrole/multi-wall carbon nanotube films as an effective counter electrode in bifacial dye-sensitized solar cells. J Mater Sci 52, 8421–8431 (2017)

    Article  CAS  Google Scholar 

  24. K. Nagaraja, S. Pramodini, P. Poornesh, M. Telenkov, I. Kityk, "Nonlinear optical properties of polyaniline and poly (o-toluidine) composite thin films with multi walled carbon nano tubes. Physica Bvol. 512, 45–53 (2017)

    Article  CAS  Google Scholar 

  25. A.S. Hassanien, A. Akl, Influence of composition on optical and dispersion parameters of thermally evaporated non-crystalline Cd50S50− xSex thin films. J Alloys Comp 648, 280–290 (2015)

    Article  CAS  Google Scholar 

  26. A. Alsaad, A. Ahmad, A.R. Al Dairy, A.S. Al-anbar, Q. Al-Bataineh, "Spectroscopic characterization of optical and thermal properties of (PMMA-PVA) hybrid thin films doped with SiO2 nanoparticles. Results in Physics 19, 1034 (2020)

    Article  Google Scholar 

  27. M. Tommalieh, N.S. Awwad, H.A. Ibrahium, "Characterization and electrical enhancement of PVP/PVA matrix doped by gold nanoparticles prepared by laser ablation. Radiat. Phys. Chem. 179, 109195 (2021)

    Article  CAS  Google Scholar 

  28. P. Dhatarwal and R. J. O. Sengwa, "Nanofiller controllable optical parameters and improved thermal properties of (PVP/PEO)/Al2O3 and (PVP/PEO)/SiO2 nanocomposites," vol. 233, p. 166594, 2021.

  29. A. Alsaad, A. R. Al Dairy, A. Ahmad, A. S. Al-anbar, and Q. M. J. P. B. Al-Bataineh, "Synthesis and characterization of as-grown doped polymerized (PMMA-PVA)/ZnO NPs hybrid thin films," pp. 1–22, 2021.

  30. K. Joshi et al., "Band gap widening and narrowing in Cu-doped ZnO thin films," vol. 680, pp. 252–258, 2016.

  31. S. Aksoy, Y. Caglar, S. Ilican, and M. J. O. A. Caglar, "Effect of Sn dopants on the optical and electrical properties of ZnO films," vol. 40, no. 1, pp. 7–14, 2010.

  32. P. Norouzzadeh, K. Mabhouti, M. Golzan, and R. J. O. Naderali, "Investigation of structural, morphological and optical characteristics of Mn substituted Al-doped ZnO NPs: A Urbach energy and Kramers-Kronig study," vol. 204, p. 164227, 2020.

  33. M. Caglar and F. J. A. S. S. Yakuphanoglu, "Structural and optical properties of copper doped ZnO films derived by sol–gel," vol. 258, no. 7, pp. 3039–3044, 2012.

  34. A. Hassanien, A. A. J. S. Akl, and Microstructures, "Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films," vol. 89, pp. 153–169, 2016.

  35. Q. M. A.-B. Mr, T. O. S. Mr, and K. A. A.-i. J. P. B. C. M. Miss, "Optical properties of hydrophobic ZnO nano-structure based on antireflective coatings of ZnO/TiO2/SiO2 thin films," vol. 593, p. 412263, 2020.

  36. Q. M. Al-Bataineh, A. A. Ahmad, A. Alsaad, and A. D. J. H. Telfah, "Optical characterizations of PMMA/metal oxide nanoparticles thin films: bandgap engineering using a novel derived model," vol. 7, no. 1, p. e05952, 2021.

  37. M. Askari et al., "Structural and optical properties of PVP-capped nanocrystalline ZnxCd1− xS solid solutions," vol. 81, pp. 193–201, 2015.

  38. C. R. Dhas, R. Venkatesh, R. Sivakumar, A. M. E. Raj, and C. J. O. M. Sanjeeviraja, "Effect of solution molarity on optical dispersion energy parameters and electrochromic performance of Co3O4 films," vol. 72, pp. 717–729, 2017.

  39. M. Oubaha, S. Elmaghrum, R. Copperwhite, B. Corcoran, C. McDonagh, and A. J. O. M. Gorin, "Optical properties of high refractive index thin films processed at low-temperature," vol. 34, no. 8, pp. 1366–1370, 2012.

  40. K. U. Kumar, D. S. Murali, and A. J. J. o. P. D. A. P. Subrahmanyam, "Flexible electrochromics: magnetron sputtered tungsten oxide (WO3− x) thin films on lexan (optically transparent polycarbonate) substrates," vol. 48, no. 25, p. 255101, 2015.

  41. J. Raja, K. Jang, H. H. Nguyen, T. T. Trinh, W. Choi, and J. J. C. a. p. Yi, "Enhancement of electrical stability of a-IGZO TFTs by improving the surface morphology and packing density of active channel," vol. 13, no. 1, pp. 246–251, 2013.

  42. R. Sharma, K. Sehrawat, A. Wakahara, and R. J. A. S. S. Mehra, "Epitaxial growth of Sc-doped ZnO films on Si by sol–gel route," vol. 255, no. 11, pp. 5781–5788, 2009.

  43. B. Barış, H. G. Özdemir, N. Tuğluoğlu, S. Karadeniz, Ö. F. Yüksel, and Z. J. J. o. M. S. M. i. E. Kişnişci, "Optical dispersion and dielectric properties of rubrene organic semiconductor thin film," vol. 25, no. 8, pp. 3586–3593, 2014.

  44. Effects of substrate temperature, A. B. Khatibani and S. J. J. o. n.-c. s. Rozati, "Synthesis and characterization of amorphous aluminum oxide thin films prepared by spray pyrolysis. J. Non-Cryst. Solids 363, 121–133 (2013)

    Article  Google Scholar 

  45. S. Boulahlib, K. Dib, M. Özacar, Y.J.O.M. Bessekhouad, "Optical, dielectric, and transport properties of Ag-doped ZnO prepared by Aloe Vera assisted method. Opt. Mater. 113, 110889 (2021)

    Article  CAS  Google Scholar 

  46. K. Dib, M. Trari, Y.J.A.S.S. Bessekhouad, "(S, C) co-doped ZnO properties and enhanced photocatalytic activity. Applied Surface Scienc 505, 144541 (2020)

    Article  CAS  Google Scholar 

  47. M. Yıldırım, F. Özel, N. Tuğluoğlu, Ö. Yüksel, Optical characterization of Cu2ZnSnSe4-xSx nanocrystals thin film. J Alloys Comp 666, 144–152 (2016)

    Article  Google Scholar 

  48. S. Fouad, I. El Radaf, P. Sharma, M. El-Bana, and Compounds, "Multifunctional CZTS thin films: structural, optoelectrical, electrical and photovoltaic properties. J Alloys Comp 757, 133–134 (2018)

    Article  Google Scholar 

  49. I. El Radaf, H. Al-Zahrani, S. Fouad, and M. J. C. I. El-Bana, "Profound optical analysis for novel amorphous Cu2FeSnS4 thin films as an absorber layer for thin film solar cells," vol. 46, no. 11, pp. 18778–18784, 2020.

  50. J. I. Pankove, Optical processes in semiconductors. Courier Corporation, 1975.

  51. M.K. Khalaf, Annealing Effect on Structural and Optical Properties of Cr2O3 Thin Films Prepared by RF Magnetron Sputtering. IOP Conference Series 1105(1), 012064 (2021)

    Article  CAS  Google Scholar 

  52. W. Spitzer, H.J.P.R. Fan, Determination of optical constants and carrier effective mass of semiconductors Phys. Rev. 106(5), 882 (1957)

    CAS  Google Scholar 

  53. O. G. Abdullah, S. B. Aziz, and M. A. J. J. o. M. S. M. i. E. Rasheed, "Effect of silicon powder on the optical characterization of Poly (methyl methacrylate) polymer composites," vol. 28, no. 5, pp. 4513–4520, 2017.

  54. F.Z. Bedia et al., "Effect of tin doping on optical properties of nanostructured ZnO thin films grown by spray pyrolysis technique. J Alloys Comp 616, 312–318 (2014)

    Article  CAS  Google Scholar 

  55. Q.M. Al-Bataineh et al., Synthesis, Crystallography, Microstructure, Crystal Defects, Optical and Optoelectronic Properties of ZnO: CeO2 Mixed Oxide Thin Films. Photonics 7(4), 112 (2020)

    Article  CAS  Google Scholar 

  56. M. Abdel-Aziz, I. Yahia, L. Wahab, M. Fadel, M. Afifi, "Determination and analysis of dispersive optical constant of TiO2 and Ti2O3 thin films. Appl. Surf. Sci. 252(23), 8163–8170 (2006)

    Article  CAS  Google Scholar 

  57. M. Rashidian, D. Dorranian, A. Physics, "Low-intensity UV effects on optical constants of PMMA film. J Theor Appl Phys 8(2), 1–7 (2014)

    Article  Google Scholar 

  58. S. Wemple, M. DiDomenico, "Behavior of the electronic dielectric constant in covalent and ionic materials. Phys. Rev. B 3(4), 1338 (1971)

    Article  Google Scholar 

  59. S. Wemple, M.J.P.R.L. DiDomenico Jr., Optical dispersion and the structure of solids. Phys. Rev. Lett. 23(20), 1156 (1969)

    Article  CAS  Google Scholar 

  60. H.S. Shaaker, W.A. Hussain, H.A.J.A.A.S.R. Badran, Determination of the optical constants and optical limiting of doped malachite green thin films by the spray method. Adv. Appl. Sci. Res 3(5), 2940–2946 (2012)

    CAS  Google Scholar 

  61. T.S. Hamad, "Refractive index dispersion and analysis of the optical parameters of (PMMA/PVA) Thin film. J Al-Nahrain Univ Sci 16(3), 164–170 (2013)

    Article  Google Scholar 

  62. A. Benchaabane et al., "Performances of effective medium model in interpreting optical properties of polyvinylcarbazole: ZnSe nanocomposites. J. Appl. Phys. 115(13), 134313 (2014)

    Article  Google Scholar 

  63. E.R. Shaaban, N. Afify, El-Taher, and Compounds, Effect of film thickness on microstructure parameters and optical constants of CdTe thin films. Non-Oxide Glasses 482, 400–404 (2009)

    CAS  Google Scholar 

  64. C. Oriaku, J. Osuwa, and C. J. N.-O. G. Njoku, "Single oscillator parameters and optical energies of laser irradiated Cu doped cds thin films," vol. 3, no. 1, pp. 25–30, 2011.

  65. M.J.P.B.C.M. Abutalib, "Insights into the structural, optical, thermal, dielectric, and electrical properties of PMMA/PANI loaded with graphene oxide nanoparticles. Physica B 552, 19–29 (2019)

    Article  CAS  Google Scholar 

  66. C. Zeng, N. Hossieny, C. Zhang, B.J.P. Wang, "Synthesis and processing of PMMA carbon nanotube nanocomposite foams. Polymer 51(3), 655–664 (2010)

    Article  CAS  Google Scholar 

  67. R. Huszank, E. Szilágyi, Z. Szoboszlai, Z.J.N. Szikszai, Materials, and Atoms, "Investigation of chemical changes in PMMA induced by 1.6 MeV He+ irradiation by ion beam analytical methods (RBS-ERDA) and infrared spectroscopy (ATR-FTIR). Nuclear Instruments and Methods in Physics Research Section 450, 364–368 (2019)

    Article  CAS  Google Scholar 

  68. J. Heidarzadeh, N. Marzban, M. Pourmohammadbagher, G. Najafpour, "Development of a nano alumina-zirconia composite catalyst as an active thin film in biodiesel production. Int. J. Chem. Mol Engin 25(6), 578–582 (2019)

    Google Scholar 

  69. J. Coates, "Interpretation of infrared spectra, a practical approach," ed: Citeseer, 2000.

  70. CAJP Wilkie and Stability, "TGA/FTIR: an extremely useful technique for studying polymer degradation. Polym. Degrad. Stab. 66(3), 301–306 (1999)

    Article  Google Scholar 

  71. Polypyrrole core-shell nanocomposites, V. Hebbar, R. J. M. S. Bhajantri, and E. B, "Synthesis and dielectric investigations of bismuth sulfide particles filled PVA. Mater. Sci. Eng. 224, 171–180 (2017)

    Article  Google Scholar 

  72. M.M. Abutalib, A.C. Rajeh, "Influence of MWCNTs/Li-doped TiO2 nanoparticles on the structural, thermal, electrical and mechanical properties of poly (ethylene oxide)/poly (methylmethacrylate) composite. J. Organomet. Chem. 918, 121309 (2020)

    Article  CAS  Google Scholar 

  73. L. Chen, J. Zhu, Q. Li, S. Chen, Y. Wang, "Controllable synthesis of functionalized CdS nanocrystals and CdS/PMMA nanocomposite hybrids. Nano Lett. 43(11), 4593–4601 (2007)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the deanship of scientific research at Jordan University of Science and Technology for financial, technical, and logistic support. Special acknowledgments are forwarded to Borhan A. Albiss and Mohammad A. Al-Omari at the department of Physics, Jordan University of Science and Technology, for the access provided for their laboratories.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, ABM, AAA, and ADT; Methodology, ABM, AAA, AMA, and ADT; Investigation, ABM and AAA; Data curation, ABM and AMA; Formal analysis, ABM, AAA, AMA, and ADT; Writing – original draft, ABM; Writing – review & editin;, AAA, AMA and ADT Funding acquisition, AAA, AMA and ADT; Project administration, AAA, AMA, and ADT; Resources, AAA; Supervision, ABM; Validation, ADT; Visualization, Validation, and AAA.

Corresponding author

Correspondence to A. M. Alsaad.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest (financial or non-financial).

Research involve human participants and/or animals

This research does not involve human participants and/or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Migdadi, A.B., Ahmad, A.A., Alsaad, A.M. et al. Synthesis, optoelectronic and thermal characterization of PMMA-MWCNTs nanocomposite thin films incorporated by ZrO2 NPs. J Mater Sci: Mater Electron 33, 5087–5104 (2022). https://doi.org/10.1007/s10854-022-07699-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-07699-8

Navigation