Skip to main content
Log in

A high-efficiency electrochemical sensor of dopamine based on WS2 nanosheets decorated with dandelion-like platinum–silver nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Tungsten disulfide nanosheets(WS2) and dandelion-like platinum–silver nanoparticles(PtAg NCs) were synthesized by hydrothermal method and seed-mediated growth approach, and a novel dopamine(DA) electrochemical sensor based on PtAg/WS2/GCE was developed and a new method for detecting DA was established. The investigation of scanning electron microscopy (SEM) and transmission electron microscopy(TEM) exhibited that dandelion-like PtAg NCs were successfully dispersed on the surface of WS2 nanosheets with the size about ~ 10 nm and the thickness of WS2 nanosheet could be estimated to be 3.1 ± 0.02 nm with a lattice constants of 0.6 ± 0.03 nm, X-ray diffraction(XRD) and X-ray photoelectron spectroscopy(XPS) patterns proved PtAg exists as alloy form and both were metallic phases. The electrochemical results revealed the obtained sensors possessed ideal electrocatalytic activity toward DA with a wide linear range of 0.6 μM to 1 mM(R2 = 0.9991), high sensitivity (348.8 μA·mM−1·cm−2), low detection limit 0.2 μM (S/R = 3), the relative standard deviation (RSD) was estimated to be 2.3%, current respond toward DA remains 92.79% after several day, showing a good stability, repeatability and selectivity. Moreover, compared with other similar DA sensors, the linear range of the sensor was 2 orders of magnitude wider, and the detection limit was 5 times lower.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Y.H. Dong, J.B. Liu, J.B. Zheng, Colloids Surf A. Physicochem. Eng. Asp. 608, e125617 (2021)

    Article  Google Scholar 

  2. G. Selvolini, C. Lazzarini, Giovanna Marrazza. Sensors. 19, 3097 (2019)

    Article  CAS  Google Scholar 

  3. E. Molaakbari, A. Mostafavi, H. Beitollahi, Sens. Actuators B. Chem. 208, 195–203 (2015)

    Article  CAS  Google Scholar 

  4. S. Wang, P. Guo, G. Ma, Electrochim. Acta. 360, e137016 (2020)

    Article  Google Scholar 

  5. S. Umapathi, J. Masud, H. Coleman, M. Nath, Microchim. Acta. 187, 440 (2020)

    Article  CAS  Google Scholar 

  6. A. Naccarato, E. Gionfriddo, G. Sindona, A. Tagarelli, Anal. Chim. Acta. 810, 17–24 (2014)

    Article  CAS  Google Scholar 

  7. H. Duan, L. Li, X. Wang, Y. Wang, J. Li, C. Luo, Spectrochim. Acta A. Mol Biomol Spectrosc 139, 374–379 (2015)

    Article  CAS  Google Scholar 

  8. M. Maminski, M. Olejniczak, M. Chudy, A. Dybko, Z. Brzozka, Anal. Chim. Acta. 540, 153–157 (2005)

    Article  CAS  Google Scholar 

  9. A. Bacaloni, S. Insogna, A. Sancini, M. Ciarrocca, F. Sinibaldi, Biomed. Chromatogr 27, 987–993 (2013)

    CAS  Google Scholar 

  10. X. Yang, J. Kirsch, Y. Zhang, J. Fergus, A. Simonian, J. Electrochem. Soc. 161, 3036–3041 (2014)

    Article  Google Scholar 

  11. K. Wang, P. Liu, Y. Ye, J. Li, W. Zhao, X. Huang, Sens. Actuators B-Chem. 197, 292–299 (2014)

    Article  CAS  Google Scholar 

  12. T. Qian, C. Yu, X. Zhou, S. Wu, J. Shen, Sens. Actuators B-Chem. 193, 753–769 (2014)

    Article  Google Scholar 

  13. J. Feng, Q. Li, J. Cai, T. Yang, J. Chen, X. Hou, Sens. Actuator B-Chem. 298, e126872 (2019)

    Article  Google Scholar 

  14. E. Er, H. Celikkan, N. Erk, Sens. Actuators B-Chem. 238, 779–787 (2017)

    Article  CAS  Google Scholar 

  15. Y.M. Chen, F. Yang, Y. Dai, J. Phys. Chem. C. 112(5), 1645–1649 (2008)

    Article  CAS  Google Scholar 

  16. H. Zhang, X. Zhong, J.J. Xu, Langmuir 24(23), 13748–13752 (2008)

    Article  CAS  Google Scholar 

  17. I. Uddin, U. Yaqoob, K. Hassan, Int. J. Hydrogen. Energy. 41, 15399–15410 (2016)

    Article  CAS  Google Scholar 

  18. Y. Shi, T.T. Zhai, Y. Zhou, J. Electroanal. Chem. 819, 442–446 (2018)

    Article  CAS  Google Scholar 

  19. J.P. Wang, P. Holt-Hindle, D. MacDonald, D.F. Thomas, A. Chen, Electrochim. Acta. 53, 6944–6952 (2008)

    Article  CAS  Google Scholar 

  20. X.Y. Zhua, A.J. Wang, S.S. Chen, Sens. Actuators. B. Chem. 260, 945–952 (2018)

    Article  Google Scholar 

  21. R.M.A. Hameed, S.S. Medany, Synth. Met. 247, 67–80 (2019)

    Article  Google Scholar 

  22. Z.L. Zhao, L.Y. Zhang, S.J. Bao, Appl. Catal. B. 174, 361–366 (2015)

    Article  Google Scholar 

  23. F. Nosheen, Z. Zhang, J. Zhuang, X. Wang, Nanoscale 5, 3660–3663 (2013)

    Article  CAS  Google Scholar 

  24. V.R. Stamenkovic, B.S. Mun, M. Arenz, K.J.J. Mayrhofer, C.A. Lucas, G. Wang, P.N. Ross, N.M. Markovic, Nat. Mater. 6, 241–247 (2007)

    Article  CAS  Google Scholar 

  25. J. Cao, S. Liu, J. Xie, S. Zhang, G. Cao, X. Zhao, ACS Catal. 5, 241–245 (2014)

    Article  Google Scholar 

  26. A. Deepi, G. Srikesh, A.S. Nesaraj, Ceram. Int. 44, 20524–20530 (2018)

    Article  CAS  Google Scholar 

  27. N.S. Anuar, W.J. Basirun, M. Shalauddin, S. Akhter, RSC Adv. 10, 17336 (2020)

    Article  CAS  Google Scholar 

  28. F. Liu, Y. Piao, K.S. Choi, T.S. Seo, Carbon 50, 123–133 (2012)

    Article  CAS  Google Scholar 

  29. X.G. Li, X.X. Li, Z. Li, J. Wang, J.W. Zhang, Sens. Actuator B-Chem. 240, 273–277 (2017)

    Article  CAS  Google Scholar 

  30. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Nat. Nanotechnol. 6(3), 147–150 (2011)

    Article  CAS  Google Scholar 

  31. W.S. Yun, S.W. Han, S.C. Hong, I.G. Kim, J.D. Lee, Phys. Rev. B. 85(3), e033305 (2012)

    Article  Google Scholar 

  32. Z.Y. Jia, J.Y. Xiang, F.S. Wen, R.L. Yang, C.X. Hao, Z.Y. Liu, A.C.S. Appl, Mater. Interfaces. 8, 4781–4788 (2016)

    Article  CAS  Google Scholar 

  33. S. Tongay, J. Zhou, C. Ataca, J. Liu, J.S. Kang, T.S. Matthews, L. You, J.B. Li, J.C. Grossman, J.Q. Wu, Nano Lett. 13(6), 2831–2836 (2013)

    Article  CAS  Google Scholar 

  34. Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Nat Nanotechnol. 7(11), 699–712 (2012)

    Article  CAS  Google Scholar 

  35. M. Pumera, A.H. Loo, Trends. Analyt. Chem. 61, 49–53 (2014)

    CAS  Google Scholar 

  36. Z.B. Chen, A.J. Forman, T.F. Jaramillo, J. Phys. Chem C. 117, 9713–9722 (2013)

    Article  CAS  Google Scholar 

  37. D. Merki, S. Fierro, H. Vrubel, Chem. Sci. 2, 1262–1267 (2011)

    Article  CAS  Google Scholar 

  38. B.L. Hu, X.Y. Qin, A.M. Asiri, Electrochim. Acta. 100, 24–28 (2013)

    Article  CAS  Google Scholar 

  39. S.M. Ahmed, H. Gerischer, Electrochimi. Acta. 24, 705–711 (1979)

    Article  CAS  Google Scholar 

  40. C.X. Cong, J.Z. Shang, Y.L. Wang, T. Yu, Adv. Optical Mater. 6(1), 1700767 (2018)

    Article  Google Scholar 

  41. L. Wang, W.Y. Wang, Q. Wang, X.C. Chi, Z.H. Kang, Q. Zhou, L.Y. Pan, H.Z. Zhang, Y.H. Wang, RSC Adv. 9, 37195 (2019)

    Article  CAS  Google Scholar 

  42. W.S. Xu, D.C. Kozawa, Y.Q. Zhou, Y.Z. Wang, Y.W. Sheng, T. Jiang, M.S. Strano, J.H. Warner, Small 16(3), 1905985 (2020)

    Article  CAS  Google Scholar 

  43. T.Y. Wang, H.C. Zhu, J.Q. Zhuo, Anal. Chem. 85, 10289–10295 (2013)

    Article  CAS  Google Scholar 

  44. L. Durai, C.Y. Kong, S. Badhulika, Mater. Sci. Eng. C. 107, e110217 (2020)

    Article  Google Scholar 

  45. H.Y. Yue, P.F. Wu, S. Huang, J. Electroanal Chem. 833, 427–432 (2019)

    Article  CAS  Google Scholar 

  46. S.X. Cao, T.M. Liu, S. Hussain, W. Zeng, X.H. Peng, F.S. Pan, Mater Lett. 129, 205–208 (2014)

    Article  CAS  Google Scholar 

  47. K. Tang, X.F. Wang, Q. Li, C.L. Yan, Adv. Mater. 30(7), 1704779 (2018)

    Article  Google Scholar 

  48. S.X. Cao, T.M. Liu, W. Zeng, S. Hussain, X.H. Peng, F.S. Pan, J. Mater. Sci: Mater Electron. 25, 4300–4305 (2014)

    CAS  Google Scholar 

  49. Z.Z. Wu, B.Z. Fang, A. Bonakdarpour, A. Sun, D.P. Wilkinson, D.Z. Wang, Appl Catal B-environ 125, 59–66 (2012)

    Article  CAS  Google Scholar 

  50. C. Navío, S. Vallejos, T. Stoycheva, Mater. Chem. Phys 134, 809–813 (2012)

    Article  Google Scholar 

  51. G.A. Swift, R. Koc, J. Mater. Sci 36, 803–806 (2001)

    Article  CAS  Google Scholar 

  52. C. Zhang, Y. Zhang, X. Du, Y. Chen, W. Dong, B. Han, Q. Chen, Talanta 159, 280–286 (2016)

    Article  CAS  Google Scholar 

  53. C.H. Fang, J. Zhao, G.L. Zhao, L. Kuai, B. Geng, Nanoscale 8, 14971–14978 (2016)

    Article  CAS  Google Scholar 

  54. X.B. Xie, G.H. Gao, S.D. Kang, T. Shibayama, Y.H. Lei, D.Y. Gao, L.T. Cai, Adv. Mater. 27, 5573–5577 (2015)

    Article  CAS  Google Scholar 

  55. H. Liu, F. Ye, Q.F. Yao, H.B. Cao, J.P. Xie, J.Y. Lee, J. Yang, Sci Rep. 4, 3969 (2014)

    Article  Google Scholar 

  56. Y. Wu, Y.G. Chen, C.Y. Nan, L.L. Li, D.S. Wang, Q. Peng, Y.D. Li, Nano Res. 8(1), 140–155 (2015)

    Article  Google Scholar 

  57. X.H. Zeng, Z.P. Ding, C. Ma, L.D. Wu, J.T. Liu, L. Chen, D.G. Ivey, W.F. Wei, Acs Appl Mater Inter 8(29), 18841–18848 (2016)

    Article  CAS  Google Scholar 

  58. Z.Y. Zhang, K.C. Liu, Z.Q. Feng, Y.N. Bao, B. Dong, Sci. Rep. 6, 19221 (2016)

    Article  CAS  Google Scholar 

  59. M. Zhu, P. Chen, M. Liu, ACS Nano 5, 4529–4536 (2011)

    Article  CAS  Google Scholar 

  60. A.J. Bard, L.R. Faulkner, Electrochemical Methods. 2, 482 (2001)

    Google Scholar 

  61. G. Selvolini, C. Lazzarini, G. Marrazza, Sensors. 19(14), 3097 (2019)

    Article  CAS  Google Scholar 

  62. K. Pramoda, K. Moses, U. Maitra, Electroanalysis 27, 1892–1898 (2015)

    Article  CAS  Google Scholar 

  63. S. Liu, J. Yan, G.W. He, D.D. Zhong, J.X. Chen, L.Y. Shi, X.M. Zhou, H.J. Jiang, J. Electroanal. Chem. 672, 40–44 (2012)

    Article  CAS  Google Scholar 

  64. S. Palanisamy, S. Ku, S.M. Chen, Microchim. Acta. 180, 1037–1042 (2013)

    Article  CAS  Google Scholar 

  65. J. Jin, H. Mei, H. Wu, J. Alloys Compd. 689, 174–181 (2016)

    Article  CAS  Google Scholar 

  66. A.S. Adekunle, B.O. Agboola, J. Pillay, K.I. Ozoemena, Sens. Actuator B-Chem. 148, 93–102 (2010)

    Article  CAS  Google Scholar 

  67. H. Zhang, F.H. Zhang, S. Li, H.X. Li, Ionics 23, 2475–2487 (2017)

    Article  CAS  Google Scholar 

  68. Z.Q. Gao, H. Huang, Chem. Commun. 19(19), 2107–2108 (1998)

    Article  Google Scholar 

  69. P.R. Roy, T. Okajima, T. Ohsaka, Bioelectrochemistry 59, 11–19 (2003)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Yingshuang Li, The first draft of the manuscript was written by Yingshuang Li and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jianbin Zheng.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Fan, C. & Zheng, J. A high-efficiency electrochemical sensor of dopamine based on WS2 nanosheets decorated with dandelion-like platinum–silver nanoparticles. J Mater Sci: Mater Electron 33, 5061–5072 (2022). https://doi.org/10.1007/s10854-022-07695-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-07695-y

Navigation