Skip to main content
Log in

Influence of edge and center oxidation configurations on non-radiative relaxation in graphene quantum dots

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The photoluminescence quantum yield of graphene quantum dots (GQDs) is usually very low because the fast electron–hole recombination converts electronic energy into thermal energy. This problem can be addressed by controlling the surface chemistry of the GQDs through the manipulation of the oxidation configurations. The optoelectronic properties of GQDs functionalized with hydroxyl groups at different sites of the GQDs are investigated in this work using density-functional theory (DFT) and linear response time-dependent DFT calculations. We also calculated the non-radiative decay rates of GQDs with different oxidation configurations. Our results show that the center-oxidized configurations lead to a larger perturbation of the conjugated π-system, reducing the band gap and the red-shift of the absorption spectra. The addition of solvent leads to red-shifts in the absorption spectra and increased intensities for some center-oxidized configurations. In contrast, only the red-shifts occur in the absorption spectra for the edge-oxidized configurations. Placement of the hydroxyl group in the basal plane of the GQD accelerates the non-radiative decay, while the placement of the hydroxyl group at the edges of the GQD suppresses the non-radiative decay. The current calculations shed light on the relationship between the surface chemistry and the photoluminescence efficiency of GQDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. M.H. Facure, R. Schneider, L.A. Mercante, D.S. Correa, A review on graphene quantum dots and their nanocomposites: from laboratory synthesis towards agricultural and environmental applications. Environ. Sci. Nano 7(12), 3710–3734 (2020)

    Article  CAS  Google Scholar 

  2. T.A. Tabish, C.J. Scotton, D.C.J. Ferguson, L. Lin, A.v. der Veen, S. Lowry, M. Ali, F. Jabeen, M. Ali, P.G. Winyard, Biocompatibility and toxicity of graphene quantum dots for potential application in photodynamic therapy. Nanomedicine 13, 1923–1937 (2018)

    Article  CAS  Google Scholar 

  3. Q. Liu, B. Guo, Z. Rao, B. Zhang, J.R. Gong, Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-tissue imaging. Nano Lett. 13(6), 2436–2441 (2013)

    Article  CAS  Google Scholar 

  4. M.X. Liu, Y. Nuri, Y. Maksym, J. Maximilian, V. Wood, E.H. Sargent, Colloidal quantum dot electronics, Nature. Electronics 4, 548–558 (2021)

    Google Scholar 

  5. S. Campuzano, P. Yáñez-Sedeño, J.M. Pingarrón, Carbon dots and graphene quantum dots in electrochemical biosensing. Nanomaterials 9(4), 634 (2019)

    Article  CAS  Google Scholar 

  6. S.H. Yoon, S. Kim, H.J. Woo, J. Kim, Y.W. Kim, S. Seo, E. Yoo, J.W. Cho, Y.J. Song, Y.J. Choi, Flexible quantum dot light-emitting diodes without sacrificing optical and electrical performance. Appl. Surf. Sci. 566, 150614 (2021)

    Article  CAS  Google Scholar 

  7. S. Sarthik, B.L. Sovan, B. Koushik, S.K., Nikhil, Graphene quantum dots-ornamented waterborne epoxy-based fluorescent adhesive via reversible addition-fragmentation chain transfer-mediated miniemulsion polymerization: a potential material for art conservation. ACS Appl. Mater. Interfaces 13(30), 36307–36319 (2021)

    Article  Google Scholar 

  8. S. Wang, Z. Li, X. Xu, G. Zhang, Y. Li, Q. Peng, Amino-functionalized graphene quantum dots as cathode interlayer for efficient organic solar cells: quantum dot size on interfacial modification ability and photovoltaic performance. Adv. Mater. Interfaces 6(3), 1801480 (2019)

    Article  Google Scholar 

  9. D. Du, K. Wang, Y. Wen, Y. Li, Y.Y. Li, Photodynamic graphene quantum dot: reduction condition regulated photoactivity and size dependent efficacy. ACS Appl. Mater. Interfaces. 8(5), 3287–3294 (2016)

    Article  CAS  Google Scholar 

  10. Z.J. Zhou, Z.B. Liu, Z.R. Li, X.R. Huang, C.C. Sun, Shape effect of graphene quantum dots on enhancing second-order nonlinear optical response and spin multiplicity in NH2–GQD–NO2 systems. J. Phys. Chem. C 115(33), 16282–16286 (2011)

    Article  CAS  Google Scholar 

  11. L. Kittiratanawasin, S. Hannongbua, The effect of edges and shapes on band gap energy in graphene quantum dots. Integr. Ferroelectr. 175(1), 211–219 (2016)

    Article  CAS  Google Scholar 

  12. S.P. Wang, Y. Li, Z.X. Zhang, Y. Zhang, Y. Wang, S.M. Kong, H.C. Li, W. Jian, F.Q. Bai, H.X. Zhang, Computational studies on the materials combining graphene quantum dots and Pt complexes with adjustable luminescence characteristics. Inorg. Chem. 60, 1480–1490 (2021)

    Article  CAS  Google Scholar 

  13. P. Cui, Y. Xue, Tuning non-radiative recombination loss by selective oxidation patterns of epoxy groups bound to different sites of graphene quantum dots. Chem. Eng. J. 431, 134052 (2022)

    Article  CAS  Google Scholar 

  14. P. Cui, Y. Xue, The role of center-N-doping in non-radiative recombination loss of nitrogen-doped graphene quantum dots. Mater. Sci. Semiconductor Process. 139, 106323 (2022)

    Article  CAS  Google Scholar 

  15. Z. Gan, H. Xu, Y. Hao, Mechanism for excitation-dependent photoluminescence from graphene quantum dots and other graphene oxide derivates: consensus, debates and challenges. Nanoscale 8(15), 7794–7807 (2016)

    Article  CAS  Google Scholar 

  16. A.L. Exarhos, M.E. Turk, J.M. Kikkawa, Ultrafast spectral migration of photoluminescence in graphene oxide. Nano Lett. 13(2), 344–349 (2013)

    Article  CAS  Google Scholar 

  17. S. Chen, N. Ullah, T. Wang, R. Zhang, Tuning the optical properties of graphene quantum dots by selective oxidation: a theoretical perspective. J. Mater. Chem. C 6(25), 6875–6883 (2018)

    Article  CAS  Google Scholar 

  18. A. Sheely, B. Gifford, S. Tretiak, A. Bishop, Tunable optical features of graphene quantum dots from edge functionalization. J. Phys. Chem. C 125(17), 9244–9252 (2021)

    Article  CAS  Google Scholar 

  19. P. Cui, Y. Xue, Role of edge nitrogen doping in non-radiative decay dynamics of graphene quantum dots: a Fermi’s golden rule analysis, Applied. Nanoscience 11, 2837–2845 (2021)

    Article  CAS  Google Scholar 

  20. J. Shen, Y. Zhu, X. Yang, J. Zong, J. Zhang, C. Li, One-pot hydrothermal synthesis of graphene quantum dots surface-passivated by polyethylene glycol and their photoelectric conversion under near-infrared light. New J. Chem. 36(1), 97–101 (2012)

    Article  CAS  Google Scholar 

  21. H. Tetsuka, R. Asahi, A. Nagoya, K. Okamoto, I. Tajima, R. Ohta, A. Okamoto, Optically tunable amino-functionalized graphene quantum dots. Adv. Mater. 24(39), 5333–5338 (2012)

    Article  CAS  Google Scholar 

  22. L.L. Li, J. Ji, R. Fei, C.Z. Wang, Q. Lu, J.R. Zhang, L.P. Jiang, J.J. Zhu, A facile microwave avenue to electrochemiluminescent two-color graphene quantum dots. Adv. Func. Mater. 22(14), 2971–2979 (2012)

    Article  CAS  Google Scholar 

  23. M.A. Sk, A. Ananthanarayanan, L. Huang, K.H. Lim, P. Chen, Revealing the tunable photoluminescence properties of graphene quantum dots. J. Mater. Chem. C 2(34), 6954–6960 (2014)

    Article  CAS  Google Scholar 

  24. X. Wen, P. Yu, Y.R. Toh, X. Hao, J. Tang, Intrinsic and extrinsic fluorescence in carbon nanodots: ultrafast time-resolved fluorescence and carrier dynamics. Adv. Opt. Mater. 1(2), 173–178 (2013)

    Article  Google Scholar 

  25. M.X. Gao, C.F. Liu, Z.L. Wu, Q.L. Zeng, X.X. Yang, W.B. Wu, Y.F. Li, C.Z. Huang, A surfactant-assisted redox hydrothermal route to prepare highly photoluminescent carbon quantum dots with aggregation-induced emission enhancement properties. Chem. Commun. 49(73), 8015–8017 (2013)

    Article  CAS  Google Scholar 

  26. H. Abdelsalam, H. Elhaes, M.A. Ibrahim, First principles study of edge carboxylated graphene quantum dots. Physica B 537, 77–86 (2018)

    Article  CAS  Google Scholar 

  27. S. Daryabari, S. Mansouri, J. Beheshtian, M. Karimkhani, A computational study on the novel defects of graphene quantum dot as a promising anode material for sodium ion battery. Mater. Chem. Phys. 265, 12448 (2021)

    Article  Google Scholar 

  28. B. Liu, Y. Gao, M.A. Jabed, S. Kilina, G. Liu, W. Sun, Lysosome targeting bis-terpyridine ruthenium (II) complexes: photophysical properties and in vitro photodynamic therapy. ACS Appl. Bio Mater. 3(9), 6025–6038 (2020)

    Article  CAS  Google Scholar 

  29. A.J.W. Frisch, USA, 25p, gaussian 09W Reference, (2009).

  30. M. Cossi, N. Rega, G. Scalmani, V.J. Barone, Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J. Comput. Chem. 24(6), 669–681 (2003)

    Article  CAS  Google Scholar 

  31. J. Feldmann, G. Peter, E. Göbel, P. Dawson, K. Moore, C. Foxon, R. Elliott, Linewidth dependence of radiative exciton lifetimes in quantum wells. Phys. Rev. Lett. 59(20), 2337 (1987)

    Article  CAS  Google Scholar 

  32. J. Hunger, A. Stoppa, A. Thoman, M. Walther, R. Buchner, Broadband dielectric response of dichloromethane. Chem. Phys. Lett. 471(1–3), 85–91 (2009)

    Article  CAS  Google Scholar 

  33. B.S. Brunschwig, N. Sutin, Rate-constant expressions for nonadiabatic electron-transfer reactions. Comments Inorg. Chem. 6(4), 209–235 (1987)

    Article  CAS  Google Scholar 

  34. V. Barone, J. Bloino, M. Biczysko, Vibrationally-resolved electronic spectra in GAUSSIAN 09. Revision a 2, 1–20 (2009)

    Google Scholar 

  35. A. Ito, T.J. Meyer, The Golden Rule. Application for fun and profit in electron transfer, energy transfer, and excited-state decay. Phys. Chem. Chem. Phys. 14(40), 13731–13745 (2012)

    Article  CAS  Google Scholar 

  36. G.S.M. Tong, K.T. Chan, X. Chang, C.-M. Che, Theoretical studies on the photophysical properties of luminescent pincer gold (III) arylacetylide complexes: the role of π-conjugation at the C-deprotonated [C^ N^ C] ligand. Chem. Sci. 6(5), 3026–3037 (2015)

    Article  Google Scholar 

  37. V. Sharma, P.K. Jha, Enhancement in power conversion efficiency of edge-functionalized graphene quantum dot through adatoms for solar cell applications. Solar. Energy Mater. Solar. Cells. 200, 10990 (2019)

    Article  Google Scholar 

  38. T. Lu, F.J.J.o.c.c. Chen, Multiwfn: a multifunctional wavefunction analyzer, 33(5) (2012) 580–592.

  39. C.A. Guido, P. Cortona, B. Mennucci, C. Adamo, On the metric of charge transfer molecular excitations: a simple chemical descriptor. J. Chem. Theory Comput. 9(7), 3118–3126 (2013)

    Article  CAS  Google Scholar 

  40. J. Wang, S. Cao, Y. Ding, F. Ma, W. Lu, M. Sun, Theoretical investigations of optical origins of fluorescent graphene quantum dots. Sci. Rep. 6(1), 1–5 (2016)

    Google Scholar 

  41. P. Cui, Effect of boron and nitrogen doping on carrier relaxation dynamics of graphene quantum dots. Mater. Res. Express 5(6), 065034 (2018)

    Article  Google Scholar 

  42. C.T. Chien, S.S. Li, W.J. Lai, Y.C. Yeh, H.A. Chen, I.S. Chen, L.C. Chen, K.H. Chen, T. Nemoto, S. Isoda, Tunable photoluminescence from graphene oxide. Angew. Chem. Int. Ed. 51(27), 6662–6666 (2012)

    Article  CAS  Google Scholar 

  43. S.H. Dave, C. Gong, A.W. Robertson, J.H. Warner, J.C. Grossman, Chemistry and structure of graphene oxide via direct imaging. ACS Nano 10(8), 7515–7522 (2016)

    Article  CAS  Google Scholar 

  44. M.Z. Hossain, J.E. Johns, K.H. Bevan, H.J. Karmel, Y.T. Liang, S. Yoshimoto, K. Mukai, T. Koitaya, J. Yoshinobu, M. Kawai, Chemically homogeneous and thermally reversible oxidation of epitaxial graphene. Nat. Chem. 4(4), 305–309 (2012)

    Article  CAS  Google Scholar 

  45. J.E. Johns, M.C. Hersam, Atomic covalent functionalization of graphene. Acc. Chem. Res. 46(1), 77–86 (2013)

    Article  CAS  Google Scholar 

  46. J.M. Carlsson, Buckle or break. Nat. Mater. 6(11), 801–802 (2007)

    Article  CAS  Google Scholar 

  47. L. Lin, S. Zhang, Creating high yield water soluble luminescent graphene quantum dots via exfoliating and disintegrating carbon nanotubes and graphite flakes. Chem. Commun. 48(82), 10177–10179 (2012)

    Article  CAS  Google Scholar 

  48. J.H. Warner, E.R. Margine, M. Mukai, A.W. Robertson, F. Giustino, A.I. Kirkland, Dislocation-driven deformations in graphene. Science 337(6091), 209–212 (2012)

    Article  CAS  Google Scholar 

  49. S.S. Daryabari, J. Beheshtian, S. Mansouri, Helium selectivity of H-, B-, N-, and F-doped nanoporous graphene membranes in the presence of natural gas: A density functional theory study. Superlattices. Microstructures 141, 106478 (2020)

    Article  CAS  Google Scholar 

  50. Y. Li, H. Shu, X. Niu, J. Wang, Electronic and optical properties of edge-functionalized graphene quantum dots and the underlying mechanism. J. Phys. Chem. C 119(44), 24950–24957 (2015)

    Article  CAS  Google Scholar 

  51. Z. Zhang, K. Chang, F. Peeters, Tuning of energy levels and optical properties of graphene quantum dots. Phys Rev B 77(23), 235411 (2008)

    Article  Google Scholar 

  52. X. Niu, Y. Li, H. Shu, J. Wang, Revealing the underlying absorption and emission mechanism of nitrogen doped graphene quantum dots. Nanoscale 8(46), 19376–19382 (2016)

    Article  CAS  Google Scholar 

  53. W. Yang, R.G. Parr, Hardness, softness, and the fukui function in the electronic theory of metals and catalysis. Proc. Natl. Acad. Sci. 82(20), 6723–6726 (1985)

    Article  CAS  Google Scholar 

  54. M.L. Mueller, X. Yan, B. Dragnea, L.-S. Li, Slow hot-carrier relaxation in colloidal graphene quantum dots. Nano Lett. 11(1), 56–60 (2011)

    Article  CAS  Google Scholar 

  55. X. Li, M. Rui, J. Song, Z. Shen, H. Zeng, Carbon and graphene quantum dots for optoelectronic and energy devices: a review. Adv. Func. Mater. 25(31), 4929–4947 (2015)

    Article  CAS  Google Scholar 

  56. W. Kong, Y. Wang, L. Wang, Y. Li, Y. Li, W. Xue, Investigation of photoluminescence behavior of reduced graphene quantum dots. Inorg. Chem. Commun. 99, 199–205 (2019)

    Article  CAS  Google Scholar 

  57. S. Zhu, Y. Song, J. Wang, H. Wan, Y. Zhang, Y. Ning, B. Yang, Photoluminescence mechanism in graphene quantum dots: quantum confinement effect and surface/edge state. Nano Today 13, 10–14 (2017)

    Article  CAS  Google Scholar 

  58. S. Zhu, J. Zhang, S. Tang, C. Qiao, L. Wang, H. Wang, X. Liu, B. Li, Y. Li, W. Yu, Surface chemistry routes to modulate the photoluminescence of graphene quantum dots: from fluorescence mechanism to up-conversion bioimaging applications. Adv. Func. Mater. 22(22), 4732–4740 (2012)

    Article  CAS  Google Scholar 

  59. P. Cui, M. Jabed, D.J. Vogel, S. Kilina, Phonon-Mediated Ultrafast Hole Transfer from Photoexcited CdSe Quantum Dots to Black Dye, in computational photocatalysis modeling of photophysics and photochemistry at interfaces. ed. by D. Kilin, S. Kilina, Y. Han (American Chemical Society, Washington, 2019), pp. 137–156

    Chapter  Google Scholar 

  60. P. Cui, Effects of oxidation state on charge carrier lifetimes in B, N codoped graphene oxide quantum dots. J. Phys. Chem. C 122(33), 18818–18828 (2018)

    Article  CAS  Google Scholar 

Download references

Funding

The Fundamental Research Funds for the Central Universities under Grant “JUSRP12029.”

Author information

Authors and Affiliations

Authors

Contributions

Peng Cui performed the simulation, preparation, and reviewing and editing of the original draft. Yuan Xue performed supervision.

Corresponding author

Correspondence to Peng Cui.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Research involving human/animal participants

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 358 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, P., Xue, Y. Influence of edge and center oxidation configurations on non-radiative relaxation in graphene quantum dots. J Mater Sci: Mater Electron 33, 5024–5036 (2022). https://doi.org/10.1007/s10854-021-07691-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07691-8

Navigation