Skip to main content
Log in

Comparative study on IWO and ICO transparent conductive oxide films prepared by reactive plasma deposition for copper electroplated silicon heterojunction solar cell

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Reactive plasma deposition (RPD) was utilized to prepare W-doped In2O3 (IWO) and Ce-doped In2O3 (ICO) transparent conductive oxide (TCO) films for fabricating the copper electroplated silicon heterojunction (C-HJT) solar cell. TCOs with high carrier mobility (μe) and low carrier concentration (Ne) are preferred for the solar cell to limit the photocurrent loss induced by the possible free carrier absorption in TCOs. The electrical and optical properties of the IWO and ICO films were optimized via adjusting the RPD process conditions. As a result, both IWO and ICO films presented higher μe and lower Ne than the Sn-doped In2O3 (ITO) control prepared by magnetron sputtering. Especially, the ICOs could achieve much higher μe. When an optimized ICO with μe of up to 101.7 cm2/V s was applied on the back side of the C-HJT solar cell, about 0.5% relative enhancement for the efficiency of the solar cell was achieved. The superior electrical and optical properties of ICO films are conducive to the improvement of cell efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. B. Sarma, D. Barman, B.K. Sarma, Appl. Surf. Sci. 479, 786–795 (2019)

    Article  CAS  Google Scholar 

  2. B.L. Zhu, J.M. Ma, K. Lv, C.J. Wang, J. Wu, Z.H. Gan, J. Liu, X.W. Shi, Superlattices Microstruct. 140, 106456 (2020)

    Article  CAS  Google Scholar 

  3. H. Ferhati, F. Djeffal, K. Kacha, A. Bendjerad, A. Benhaya, Physica E: Low Dimens. Syst. Nanostruct. 106, 25–30 (2019)

    Article  CAS  Google Scholar 

  4. J. Yu, J. Bian, W. Duan, Y. Liu, J. Shi, F. Meng, Z. Liu, Sol. Energy Mater. Sol. Cells 144, 359–363 (2016)

    Article  CAS  Google Scholar 

  5. S. An, P. Chen, F. Hou, Q. Wang, H. Pan, X. Chen, X. Lu, Y. Zhao, Q. Huang, X. Zhang, Sol. Energy 196, 409–418 (2020)

    Article  CAS  Google Scholar 

  6. E. Kobayashi, Y. Watabe, T. Yamamoto, Y. Yamada, Sol. Energy Mater. Sol. Cells 149, 75–80 (2016)

    Article  CAS  Google Scholar 

  7. T. Krajangsang, V. Thongpool, C. Piromjit, K. Sriprapha, Opt. Mater. 101, 109743 (2020)

    Article  CAS  Google Scholar 

  8. M.G. Sousa, A.F. da Cunha, Appl. Surf. Sci. 484, 257–264 (2019)

    Article  CAS  Google Scholar 

  9. K.-Y. Chen, S.-P. Chang, C.-H. Lin, RSC Adv. 9, 87–90 (2019)

    Article  CAS  Google Scholar 

  10. C. Han, Y.F. Zhao, L. Mazzarella, R. Santbergen, A. Montes, P. Procel, G.T. Yang, X.D. Zhang, M. Zeman, O. Isabella, Sol. Energy Mater. Sol. Cells 227, 111082 (2021)

    Article  CAS  Google Scholar 

  11. L. Shen, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences 69 (2016)

  12. F. Meng, J. Shi, Z. Liu, Y. Cui, Z. Lu, Z. Feng, Sol. Energy Mater. Sol. Cells 122, 70–74 (2014)

    Article  CAS  Google Scholar 

  13. F. Meng, J. Shi, L. Shen, L. Zhang, J. Liu, Y. Liu, J. Yu, J. Bao, Z. Liu, Jpn. J. Appl. Phys. 56, 120 (2017)

    Google Scholar 

  14. T. Koida, J. Nishinaga, Y. Ueno, H. Higuchi, H. Takahashi, M. Iioka, Y. Kamikawa, H. Shibata, S. Niki, Prog. Photovolt. 27, 491–500 (2019)

    Article  CAS  Google Scholar 

  15. Z. Lu, F. Meng, Y. Cui, J. Shi, Z. Feng, Z. Liu, J. Phys. D: Appl. Phys. 46, 075103 (2013)

    Article  CAS  Google Scholar 

  16. W. Huang, J. Shi, Y. Liu, F. Meng, Z. Liu, J. Alloys Compd. 843, 155151 (2020)

    Article  CAS  Google Scholar 

  17. Y. Abe, N. Ishiyama, Mater. Lett. 61, 566–569 (2007)

    Article  CAS  Google Scholar 

  18. X. Li, Q. Zhang, W. Miao, L. Huang, Z. Zhang, Thin Solid Films 515, 2471–2474 (2006)

    Article  CAS  Google Scholar 

  19. P.F. Newhouse, C.H. Park, D.A. Keszler, J. Tate, P.S. Nyholm, Appl. Phys. Lett. 87, 3 (2005)

    Article  Google Scholar 

  20. J. Shi, F. Meng, J. Bao, Y. Liu, Z. Liu, Mater. Lett. 225, 54–56 (2018)

    Article  CAS  Google Scholar 

  21. L. Tutsch, H. Sai, T. Matsui, M. Bivour, M. Hermle, T. Koida, Prog. Photovolt. 29, 835–845 (2021)

    Article  CAS  Google Scholar 

  22. K. Dey, A.G. Aberle, S. van Eek, S. Venkataraj, Ceram. Int. 47, 1798–1806 (2021)

    Article  CAS  Google Scholar 

  23. S. Kang, S. Cho, P. Song, Thin Solid Films 559, 92–95 (2014)

    Article  CAS  Google Scholar 

  24. Y. Watabe, E. Kobayashi, in 29th European Photovoltaic Solar Energy Conference and Exhibition (2014), pp. 472–474

  25. B.H. Kim, C.M. Staller, S.H. Cho, S. Heo, C.E. Garrison, J. Kim, D.J. Milliron, ACS Nano 12, 3200–3208 (2018)

    Article  CAS  Google Scholar 

  26. J.Q. Wang, C.C. Meng, L. Zhao, W.J. Wang, X.X. Xu, Y.Z. Zhang, H. Yan, Sol. Energy 204, 720–725 (2020)

    Article  CAS  Google Scholar 

  27. A. Bhorde, A. Jadhavar, R. Waykar, S. Nair, H. Borate, S. Pandharkar, R. Aher, D. Naik, P. Vairale, G. Lonkar, S. Jadkar, Thin Solid Films 704, 137972 (2020)

    Article  CAS  Google Scholar 

  28. L. Voisin, M. Ohtsuka, S. Petrovska, R. Sergiienko, T. Nakamura, Optik 156, 728–737 (2018)

    Article  CAS  Google Scholar 

  29. A. Valla, P. Carroy, F. Ozanne, D. Muñoz, Sol. Energy Mater. Sol. Cells 157, 874–880 (2016)

    Article  CAS  Google Scholar 

  30. D.K. Schroder, L.G. Rubin, Phys. Today 44, 107–108 (1991)

    Article  Google Scholar 

  31. L.S. Jianhua Shi, F. Meng, Z. Liu, Mater. Lett. 182, 32–35 (2016)

    Article  Google Scholar 

  32. Z.L. Pei, C. Sun, M.H. Tan, J.Q. Xiao, D.H. Guan, R.F. Huang, L.S. Wen, J. Appl. Phys. 90, 3432–3436 (2001)

    Article  CAS  Google Scholar 

  33. E. Shanthi, V. Dutta, A. Banerjee, K.L. Chopra, J. Appl. Phys. 51, 6243–6251 (1980)

    Article  CAS  Google Scholar 

  34. J. Shi, L. Shen, F. Meng, Z. Liu, Mater. Lett. 182, 32–35 (2016)

    Article  CAS  Google Scholar 

  35. S. Ahn, S. Kim, V.A. Dao, S. Lee, S.M. Iftiquar, D. Kim, S.Q. Hussain, H. Park, J. Lee, Y. Lee, J. Cho, S. Kim, J. Yi, Thin Solid Films 546, 342–346 (2013)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the ‘‘Transformational Technologies for Clean Energy and Demonstration’’ Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA21060500), the National Natural Science Foundation of China (Grant No. 61674151), Beijing Municipal Science and Technology Project (Grant No. Z201100004520003), National Natural Science Foundation of China (Grant No. 62104228), and the Institute of Electrical Engineering, CAS (Grant No. E1551401).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhao.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Gong, Y., Diao, H. et al. Comparative study on IWO and ICO transparent conductive oxide films prepared by reactive plasma deposition for copper electroplated silicon heterojunction solar cell. J Mater Sci: Mater Electron 33, 5000–5008 (2022). https://doi.org/10.1007/s10854-021-07689-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07689-2

Navigation