Skip to main content
Log in

Hot-pressed (1-x)[0.9(0.3CoFe2O4-0.7BiFeO3)-0.1Pb(Zr0.52,Ti0.48)O3]-x poly(vinylidene difluoride) multiferroic composites with magnetically driven polarization

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Multiferroic composites are getting the spotlight in scientific community because of their versatility in various room temperature applications including the spintronics devices, actuators, sensors, and other multifunctional memory devices. Multiferroic 4-phase polymer-ceramic composites in the form of (1 − x)[0.9(0.3CoFe2O4-0.7BiFeO3)-0.1Pb(Zr0.52,Ti0.48)O3]-xPVDF (BFO-CFO-PZT/PVDF) have been synthesized by a sol–gel and hot-pressed combined low-temperature process. The impact of the PDVF addition with different volume on the structure, morphology, ferroelectric, dielectric, magnetic, and magnetoelectric features are investigated. XRD analysis shows the presence of 4 distinct phases of CFO, BFO, PZT, and PVDF. The dielectric loss and remanent polarization were found to reduce proportionally to the addition of PVDF. In the mean time, the magnetoelectric coupling retain similar large values irrelevant with the addition of PVDF. It is then concluded that the introduction of PVDF polymer matrix is able to overcome the flaws of BFO-CFO-PZT composite while retain its exceptional multiferroic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are not openly available due to copy rights of the data and are available from the corresponding author upon reasonable request from school of electronic materials science and engineering, south China university of Technology, Guangzhou, China.

References

  1. N. Adhlakha, K.L. Yadav, R. Singh, Effect of BaTiO3 addition on structural, multiferroic and magneto-dielectric properties of 0.3CoFe2O4− 0.7BiFeO3 ceramics. Smart Mater. Struct. 23(10), 105024 (2014)

    Article  Google Scholar 

  2. S. Sharma, R.K. Dwivedi, Substitutionally driven phase transition and enhanced multiferroic and electrical properties of (1− x)BiFeO3–(x) Pb (Zr0. 52Ti0. 48)O3 ceramics (0.0≤ x≤ 1.00). J. Alloys Compd. 692, 770–773 (2017)

    Article  CAS  Google Scholar 

  3. M. Sufyan, S. Atiq, S.K. Abbas, M. Younis, S. Riaz, S. Naseem, Magnetically driven robust polarization in (1–x)BiFeO3–xPbTiO3 multiferroic composites. Mater. Lett. 238, 10–12 (2019)

    Article  CAS  Google Scholar 

  4. M. Muneeswaran, A. Akbari-Fakhrabadi, M.A. Gracia-Pinilla, J.C. Denardin, N.V. Giridharan, Realization of structural transformation for the enhancement of magnetic and magneto capacitance effect in BiFeO3–CoFe2O4 ceramics for energy storage application. Sci. Rep. 11(1), 1–13 (2021)

    Article  Google Scholar 

  5. P. Martins, Y.V. Kolen’ko, J. Rivas, S. Lanceros-Mendez, Tailored magnetic and magnetoelectric responses of polymer-based composites. ACS Appl. Mater. Interfaces 7(27), 15017–15022 (2015)

    Article  CAS  Google Scholar 

  6. P. Martins, A. Larrea, R. Gonçalves, G. Botelho, E.V. Ramana, S.K. Mendiratta, S. Lanceros-Mendez, Novel anisotropic magnetoelectric effect on δ-FeO (OH)/P (VDF-TrFE) multiferroic composites. ACS Appl Mater Interfaces 7(21), 11224–11229 (2015)

    Article  CAS  Google Scholar 

  7. S. Sharma, Rietveld analysis, magnetic, transport, and optical properties of (1− x)BiFeO3–(x) Pb(Zr0.52 Ti0.48)O3 ceramics prepared by sol-gel route. J. Mater. Sci. Mater. Electron. 31(10), 7776–7785 (2020)

    Article  CAS  Google Scholar 

  8. Y. Wu, J.G. Wan, C. Huang, Y. Weng, S. Zhao, J.M. Liu, G. Wang, Strong magnetoelectric coupling in multiferroic BiFeO3–Pb(Zr0.52, Ti0.48)O3 composite films derived from electrophoretic deposition. Appl. Phys. Lett. 93(19), 192915 (2008)

    Article  Google Scholar 

  9. J.B.N.J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, R. Ramesh, Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299(5613), 1719–1722 (2003)

    Article  CAS  Google Scholar 

  10. V.A. Khomchenko, J.A. Paixão, B.F.O. Costa, D.V. Karpinsky, A.L. Kholkin, I.O. Troyanchuk, W. Kleemann, Structural, ferroelectric and magnetic properties of Bi0.85Sm0.15FeO3 perovskite. Cryst. Res. Technol. 46(3), 238–242 (2011)

    Article  CAS  Google Scholar 

  11. V.F. Freitas, I.A. Santos, É. Botero, B.M. Fraygola, D. Garcia, J.A. Eiras, Piezoelectric characterization of (0.6) BiFeO3–(0.4) PbTiO3 multiferroic ceramics. J. Am. Ceram. Soc. 94(3), 754–758 (2011)

    Article  CAS  Google Scholar 

  12. C. Lan, Y. Jiang, S. Yang, Magnetic properties of La and (La, Zr) doped BiFeO3 ceramics. J. Mater. Sci. 46(3), 734–738 (2011)

    Article  CAS  Google Scholar 

  13. Q. Xu, H. Zai, D. Wu, T. Qiu, M.X. Xu, The magnetic properties of Bi (Fe0.95 Co0.05)O3 ceramics. Appl. Phys. Lett. 95(11), 112510 (2009)

    Article  Google Scholar 

  14. V.A. Khomchenko, J.A. Paixao, V.V. Shvartsman, P. Borisov, W. Kleemann, D.V. Karpinsky, A.L. Kholkin, Effect of Sm substitution on ferroelectric and magnetic properties of BiFeO3. Scripta Mater. 62(5), 238–241 (2010)

    Article  CAS  Google Scholar 

  15. R.K. Mishra, D.K. Pradhan, R.N.P. Choudhary, A. Banerjee, Dipolar and magnetic ordering in Nd-modified BiFeO3 nanoceramics. J. Magn. Magn. Mater. 320(21), 2602–2607 (2008)

    Article  CAS  Google Scholar 

  16. L. Hongri, S. Yuxia, Substantially enhanced ferroelectricity in Ti doped BiFeO3 films. J. Phys. D Appl. Phys. 40(23), 7530 (2007)

    Article  Google Scholar 

  17. S.R. Shannigrahi, A. Huang, N. Chandrasekhar, D. Tripathy, A.O. Adeyeye, Sc modified multiferroic BiFeO3 thin films prepared through a sol-gel process. Appl. Phys. Lett. 90(2), 022901 (2007)

    Article  Google Scholar 

  18. M. Azuma, H. Kanda, A.A. Belik, Y. Shimakawa, M. Takano, Magnetic and structural properties of BiFe(1–x)MnxO3. J. Magn. Magn. Mater. 310(2), 1177–1179 (2007)

    Article  CAS  Google Scholar 

  19. H. Yang, Q. Ke, H. Si, J. Chen, 0.7 BiFeO3-0.3BaTiO3-Y3Fe5O12 composites with simultaneously improved electrical and magnetic properties. J. Appl. Phys. 111(2), 024104 (2012)

    Article  Google Scholar 

  20. S.M. Selbach, T. Tybell, M.A. Einarsrud, T. Grande, Size-dependent properties of multiferroic BiFeO3 nanoparticles. Chem. Mater. 19(26), 6478–6484 (2007)

    Article  CAS  Google Scholar 

  21. X.M. Liu, S.Y. Fu, C.J. Huang, Synthesis and magnetic characterization of novel CoFe2O4–BiFeO3 nanocomposites. Mater. Sci. Eng., B 121(3), 255–260 (2005)

    Article  Google Scholar 

  22. L. Mitoseriu, V. Buscaglia, M. Viviani, M.T. Buscaglia, I. Pallecchi, C. Harnagea, A.S. Siri, BaTiO3–(Ni0.5Zn0.5)Fe2O4 ceramic composites with ferroelectric and magnetic properties. J. Eur. Ceramic Soc. 27(13–15), 4379–4382 (2007)

    Article  CAS  Google Scholar 

  23. M. Sufyan, Z. Lu, Z. Chen, X. Wang, S.K. Abbas, Multiferroic characterization of 3-phase (1-x)(0.7BiFeO3-0.3CoFe2O4)-xPb(Zr, Ti)O3 composites with magnetically driven polarization. J. Alloys Compd. 849, 156681 (2020)

    Article  CAS  Google Scholar 

  24. S.T. Zhang, L.Y. Ding, M.H. Lu, Z.L. Luo, Y.F. Chen, Preparation and multiferroic properties of Bi0.8La0.2FeO3–CoFe2O4 ceramics. Solid State Commun. 148(9–10), 420–423 (2008)

    Article  CAS  Google Scholar 

  25. R. Gonçalves, A. Larrea, T. Zheng, M.J. Higgins, V. Sebastian, S. Lanceros-Mendez, P. Martins, Synthesis of highly magnetostrictive nanostructures and their application in a polymer-based magnetoelectric sensing device. Eur. Polymer J. 84(55), 685–692 (2016)

    Article  Google Scholar 

  26. R. Gonçalves, P. Martins, D.M. Correia, V. Sencadas, J.L. Vilas, L.M. Leon, S. Lanceros-Méndez, Development of magnetoelectric CoFe2O4/poly (vinylidene fluoride) microspheres. Rsc Adv. 5(45), 35852–35857 (2015)

    Article  Google Scholar 

  27. P. Liu, Z. Yao, J. Zhou, Z. Yang, L.B. Kong, Small magnetic Co-doped NiZn ferrite/graphene nanocomposites and their dual-region microwave absorption performance. J. Mater. Chem. C 4(41), 9738–9749 (2016)

    Article  CAS  Google Scholar 

  28. P. Martins, A. Lasheras, J. Gutiérrez, J.M. Barandiarán, I. Orue, S. Lanceros-Méndez, Optimizing piezoelectric and magnetoelectric responses on CoFe2O4/P (VDF-TrFE) nanocomposites. J. Phys. D Appl. Phys. 44(49), 495303 (2011)

    Article  Google Scholar 

  29. A. Ahlawat, S. Satapathy, S. Bhartiya, M.K. Singh, R.J. Choudhary, P.K. Gupta, BiFeO3/poly (methyl methacrylate) nanocomposite films: a study on magnetic and dielectric properties. Appl. Phys. Lett. 104(4), 042902 (2014)

    Article  Google Scholar 

  30. P. Martins, S. Lanceros-Méndez, Polymer-based magnetoelectric materials. Adv. Func. Mater. 23(27), 3371–3385 (2013)

    Article  CAS  Google Scholar 

  31. P. Martins, A.C. Lopes, S. Lanceros-Mendez, Electroactive phases of poly (vinylidene fluoride): Determination, processing and applications. Prog. Polym. Sci. 39(4), 683–706 (2014)

    Article  CAS  Google Scholar 

  32. R.P. Ummer, B. Raneesh, C. Thevenot, D. Rouxel, S. Thomas, N. Kalarikkal, Electric, magnetic, piezoelectric and magnetoelectric studies of phase pure (BiFeO3–NaNbO3)–(P (VDF-TrFE)) nanocomposite films prepared by spin coating. RSC Adv. 6(33), 28069–28080 (2016)

    Article  CAS  Google Scholar 

  33. P. Martins, D. Silva, M. Silva, S. Lanceros-Mendez, Improved magnetodielectric coefficient on polymer based composites through enhanced indirect magnetoelectric coupling. Appl. Phys. Lett. 109(11), 112905 (2016)

    Article  Google Scholar 

  34. R.G. Kepler, R.A. Anderson, R.R. Lagasse, Electric field dependence of crystallinity in poly (vinylidene fluoride). Phys. Rev. Lett. 48(18), 1274 (1982)

    Article  CAS  Google Scholar 

  35. A. Das, S. De, S. Bandyopadhyay, S. Chatterjee, D. Das, Magnetic, dielectric and magnetoelectric properties of BiFeO3-CoFe2O4 nanocomposites. J. Alloy. Compd. 697, 353–360 (2017)

    Article  CAS  Google Scholar 

  36. P. Thomas, K.T. Varughese, K. Dwarakanath, K.B.R. Varma, Dielectric properties of poly (vinylidene fluoride)/CaCu3Ti4O12 composites. Compos. Sci. Technol. 70(3), 539–545 (2010)

    Article  CAS  Google Scholar 

  37. Q. Hang, Z. Xing, X. Zhu, M. Yu, Y. Song, J. Zhu, Z. Liu, Dielectric properties and related ferroelectric domain configurations in multiferroic BiFeO3–BaTiO3 solid solutions. Ceram. Int. 38, S411–S414 (2012)

    Article  CAS  Google Scholar 

  38. P. Kumar, M. Kar, Effect of structural transition on magnetic and optical properties of Ca and Ti co-substituted BiFeO3 ceramics. J. Alloy. Compd. 584, 566–572 (2014)

    Article  CAS  Google Scholar 

  39. X. Liu, H. Li, M. Ishida, H. Zhou, PEDOT modified LiNi1/3Co1/3Mn1/3O2 with enhanced electrochemical performance for lithium ion batteries. J. Power Sources 243, 374–380 (2013)

    Article  CAS  Google Scholar 

  40. S.A. Riquelme, K. Ramam, A.F. Jaramillo, Ceramics fillers enhancing effects on the dielectric properties of poly (vinylidene fluoride) matrix composites prepared by the torque rheometer method. Results in Phys. 15, 102800 (2019)

    Article  Google Scholar 

  41. T. Badapanda, V. Senthil, S. Anwar, L.S. Cavalcante, N.C. Batista, E. Longo, Structural and dielectric properties of polyvinyl alcohol/barium zirconium titanate polymer–ceramic composite. Curr. Appl. Phys. 13(7), 1490–1495 (2013)

    Article  Google Scholar 

  42. C. Behera, R.N.P. Choudhary, P.R. Das, Development of Ni-ferrite-based PVDF nanomultiferroics. J. Electron. Mater. 46(10), 6009–6022 (2017)

    Article  CAS  Google Scholar 

  43. N. Adhlakha, K.L. Yadav, R. Singh, Implications of La and Y codoping on structural, multiferroic, magnetoelectric and optical properties of BiFeO3. Sci. Adv. Mater. 5(8), 947–959 (2013)

    Article  CAS  Google Scholar 

  44. T.J. Park, G.C. Papaefthymiou, A.J. Viescas, A.R. Moodenbaugh, S.S. Wong, Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles. Nano Lett. 7(3), 766–772 (2007)

    Article  CAS  Google Scholar 

  45. T. Kanai, S.I. Ohkoshi, K. Hashimoto, Magnetic, electric, and optical functionalities of (PLZT)x-(BiFeO3)1–x ferroelectric–ferromagnetic thin films. J. Phys. Chem. Solids 64(3), 391–397 (2003)

    Article  CAS  Google Scholar 

  46. A.A. Farghali, M. Moussa, M.H. Khedr, Synthesis and characterization of novel conductive and magnetic nanocomposites. J. Alloy. Compd. 499(1), 98–103 (2010)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MS: Concept, Experiment, Analysis. Manuscript writing. ZL: Concept, Supervision, Funding. ZC: Analysis, Review, Editing. XW: Concept, Review, Editing. JG: Review, Analysis, Editing. SA: Final review, approval.

Corresponding author

Correspondence to Zhenya Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sufyan, M., Lu, Z., Chen, Z. et al. Hot-pressed (1-x)[0.9(0.3CoFe2O4-0.7BiFeO3)-0.1Pb(Zr0.52,Ti0.48)O3]-x poly(vinylidene difluoride) multiferroic composites with magnetically driven polarization. J Mater Sci: Mater Electron 33, 4806–4818 (2022). https://doi.org/10.1007/s10854-021-07670-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07670-z

Navigation