Skip to main content
Log in

Effect of annealing temperature on SnS thin films for photodetector applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Tin sulfide (SnS) thin films were deposited at room temperature (RT) by thermal evaporation method and subsequently annealed at 150–350 °C in N2 atmosphere. The influence of annealing temperature on composition, structural, morphological and optical properties of the thin films has been investigated. X-ray diffraction (XRD) analysis and Raman studies confirmed the formation of single phase SnS films at RT and annealed up to 300 °C. The crystallite size increased from 24 nm for as-deposited film to 37 nm for the 300 °C annealed film and further reduced to 18 nm for the 350 °C annealed film. The film annealed at 200 °C was found to have better morphological features with (111) preferred oriented crystallites. The absorption coefficient, optical band gap (Eg) of the deposited films were estimated from the optical transmittance measurements. Photodetectors are fabricated by depositing Ag contacts on SnS thin films using a metal mask and photo response was tested under dark and illumination conditions using 532 nm laser of varying power intensities. The photodetectors performance is evaluated using responsivity (R), external quantum efficiency (EQE), and specific detectivity (D*). The specific detectivity of 6.8 × 1010 Jones obtained in the present study is nearly two orders of magnitude greater than that reported earlier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. D. Wang, H. Wu, Y. Xiao, Y. Zhang, D. He et al., High thermoelectric performance in low cost SnS0.91Se0.09 crystals. Science 365, 1418–1424 (2019)

    Article  Google Scholar 

  2. S. Varadharajaperumal, D. Alagarasan, C. Sripan, R. Ganesan, M.N. Satyanarayan, G. Hegde, Toxic-free surface level sulphur doped 1D Ti-Ox-Sy nanorods for superstrate heterojunction CZTS thin-film solar cells. Mater. Res. Bull. 133, 111081 (2021)

    Article  CAS  Google Scholar 

  3. S.S. Hegde, B.S. Surendra, V. Talapatadur, M. Prashanth, K. Ramesh, Visible light photo T = 4Ag + 2B1g + 4B2g + 2B3g + 2Au + 4B1u + 2B2u + 4B3u catalytic properties of cubic and orthorhombic SnS nanoparticles Chem. Phys. Lett. 54, 137665 (2020)

    Google Scholar 

  4. Y. Huang, H.X. Deng, K. Xu, Z.X. Wang, Q.S. Wang, F.M. Wang, F. Wang, X.Y. Zhan, S.S. Li, J.W. Luo, J. He, Highly sensitive and fast phototransistor based on large size CVD-grown SnS2 nanosheets. Nanoscale 7, 14093–14099 (2015)

    Article  CAS  Google Scholar 

  5. H. Dittrich, A. Stadler, D. Topa, H.J. Schimper, A. Basch, Progress in sulfosalt research. Phys. Status Solidi A 206, 1034–1041 (2009)

    Article  CAS  Google Scholar 

  6. K.D. Arun Kumar, P. Mele, M. Anitha, S. Varadharajaperumal, D. Alagarasan, N.S. Alhokbany, T. Ahamad, S.M. Alshehri, Simplified chemical processed Cd1-x Al x S thin films for high-performance photodetector applications. J. Phys. Condens. Matter. 33, 195901 (2021)

    Article  Google Scholar 

  7. D.A. Nguyen, H.M. Oh, N.T. Duong, S. Bang, S.J. Yoon, M.S. Jeong, Highly enhanced photoresponsivity of a monolayer WSe2 photodetector with nitrogen-doped graphene quantum dots. ACS Appl. Mater. Interfaces 10, 10322–10329 (2018)

    Article  CAS  Google Scholar 

  8. L.A. Burton, D. Colombara, R.D. Abellon, F.C. Grozema, L.M. Peter, T.J. Savenije, G. Dennler, A. Walsh, Synthesis, characterization, and electronic structure of single-crystal SnS, Sn2S3, and SnS2. Chem. Mater 25, 4908–4916 (2013)

    Article  CAS  Google Scholar 

  9. S.H. Kwon, B.H. Kim, D.W. Kim, H. Yoon, Y.J. Yoon, Vastly enhanced photo responsivities of phase-controlled tin sulfide thin films. Nanotechnology 31, 375702 (2020)

    Article  CAS  Google Scholar 

  10. V. Steinmann, R. Jaramillo, K. Hartman, R. Chakraborty, R.E. Brandt, J.R. Poindexter, Y.S. Lee, L. Sun, A. Polizzotti, H.H. Park, R.G. Gordon, T. Buonassisi, 3.88% efficient tin sulfide solar cells using congruent thermal evaporation. Adv. Mater. 26, 7488–7492 (2014)

    Article  CAS  Google Scholar 

  11. J.B. Johnson, H. Jones, B.S. Latham, J.D. Parker, R.D. Engelken, C. Barber, Optimization of photoconductivity in vacuum-evaporated tin sulfide thin films. Semicond. Sci. Technol. 14, 501 (1999)

    Article  CAS  Google Scholar 

  12. C. Schreyvogel, S. Temgoua, C. Giese, V. Cimalla, J. Barjon, C.E. Nebel, Fabrication of n-type doped V-shaped structures on (100) Diamond. Phys. Status Solidi A 218, 2000642 (2021)

    Article  Google Scholar 

  13. Y. Shan, Y.L.H. Pang, Applications of tin sulfide-based materials in lithium-ion batteries and sodium-ion batteries. Adv. Funct. Mater. 30, 2001298 (2020)

    Article  CAS  Google Scholar 

  14. S. Gedi, V.R.M. Reddy, T.R.R. Kotte, S.H. Kim, C.W. Jeon, Chemically synthesized Ag- doped SnS films for PV applications, javascript:void(0). Ceram. Int. 42, 19027–19035 (2016)

    Article  CAS  Google Scholar 

  15. P. Sinsermsuksakul, L. Sun, S.W. Lee, H.H. Park, S.B. Kim, C. Yang, R.G. Gordon, Overcoming efficiency limitations of SnS-based solar cells. Adv. Energy Mater 1400496, 1–7 (2014)

    Google Scholar 

  16. A. Javed, N. Khan, S. Bashir, M. Ahmad, M. Bashir, Thickness dependent structural, electrical and optical properties of cubic SnS thin films. Mater. Chem. Phys. 246, 122831 (2020)

    Article  CAS  Google Scholar 

  17. M. Haghighi, M. Minbashi, N. Taghavinia, D.H. Kim, S.M. Mahdavi, A.A. Kordbacheh, A modelling study on utilizing SnS2 as the buffer layer of CZT(S, Se) solar cells. Sol. Energy 167, 165–171 (2018)

    Article  CAS  Google Scholar 

  18. S. Ullah, A. Bouich, H. Ullah, B. Mari, M. Molars, Comparative study of binary cadmium sulfide (CdS) and tin disulfide (SnS2) thin buffer layers. Sol. Energy 208, 637–642 (2020)

    Article  CAS  Google Scholar 

  19. Y. Xu, N.A. Salim, C.W. Bumby, R.D. Tilley, Synthesis of SnS quantum dots. J. am. Chem. Soc 131, 15990–15991 (2009)

    Article  CAS  Google Scholar 

  20. S.S. Hegde, A.G. Kunjomana, K.A. Chandrasekharan, K. Ramesh, M. Prashantha, Optical and electrical properties of SnS semiconductor crystals grown by physical vapor deposition technique. Phys. B Condens. Matter 406, 1143–1148 (2011)

    Article  CAS  Google Scholar 

  21. S.S. Hegde, M. Prashantha, B.J. Fernandes, R. Venkatesh, K. Ramesh, Synthesis, thermal stability and structural transition of cubic SnS nanoparticles. J. Alloys Comp. 820, 153116 (2020)

    Article  CAS  Google Scholar 

  22. V.R.M. Reddy, S. Gedi, C. Park, R.W. Miles, Development of sulphurized SnS thin film solar cell. Curr. Appl. Phys. 15, 588–598 (2015)

    Article  Google Scholar 

  23. P. Sinsermsuksakul, L. Sun, S.W. Lee, H.H. Park, S.B. Kim, C. Yang, R.G. Gordon, Atomic layer deposition of tin monosulfide thin films. Adv. Energy Mater. 4, 1400496 (2014)

    Article  Google Scholar 

  24. S. Yuan, G. Liu, H. Tian, C. Fan, M. Wang, E. Li, Facile synthesis of tin monosulfide nanosheets via physical vapour deposition and their near-infrared photoresponse. AIP Adv. 9, 095205 (2019)

    Article  Google Scholar 

  25. T.S. Reddy, M.C. Santhosh Kumar, Co-evaporated SnS thin films for visible light photodetector applications. RSC Adv. 6, 95680 (2016)

    Article  CAS  Google Scholar 

  26. M.S. Mahdi, K. Ibrahim, A. Hmood, N.M. Ahmed, S.A. Azzez, F.I. Mustafa, A highly sensitive flexible SnS thin film photodetector in the ultraviolet to near infrared prepared by chemical bath deposition. RSC Adv. 6, 114980 (2016)

    Article  CAS  Google Scholar 

  27. G. Liu, Y. Li, B. Li, H. Tian, C. Fan, Y. Zhang, Z. Hua, M. Wang, H. Zheng, E. Li, Visible phototransistors based on vertical nanolayered heterostructures of SnS/SnS2 p–n and SnSe2/SnS2 n–n nanoflakes. J. Mater. Chem. C 00, 1–3 (2018)

    Google Scholar 

  28. V.P. Jethwaa, K. Patel, N. Som, V.M. Pathak, K.D. Patel, G.K. Solanki, P.K. Jha, Temperature dependent vibrational properties of DVT grown orthorhombic SnS single crystals and their applications as a self-powered photodetector. Appl. Surf. Sci. 531, 147406 (2020)

    Article  Google Scholar 

  29. G.M. Kumar, X. Fu, P. Ilanchezhiyan, S.U. Yuldashev, D.J. Lee, H.D. Cho, T.W. Kang, Highly sensitive flexible photodetectors based on self-assembled tin monosulfide nanoflakes with graphene electrodes. ACS Appl. Mater. Interfaces 9, 32142–32150 (2017)

    Article  Google Scholar 

  30. X. Zhou, L. Gan, Q. Zhang, X. Xiong, H. Li, Z. Zhong, J. Han, T. Zhai, High performance near-infrared photodetectors based on ultrathin SnS nanobelts grown via physical vapor deposition. J. Mater. Chem. C 2016, 1–10 (2016)

    CAS  Google Scholar 

  31. M.S. Mahdi, K. Ibrahim, N.M. Ahmed, A. Hmood, S.A. Azzez, Growth and characterization of tin sulphide nanostructured thin film by chemical bath deposition for near-infrared photodetector. Appl. Solid State Phenom. 290, 220–224 (2019)

    Article  Google Scholar 

  32. M.S. Mahdi, K. Ibrahim, N.M. Ahmed, A. Hmood, F.I. Mustafa, S.A. Azzez, M. Bououdina, High performance and low-cost UV-Visible-NIR photodetector based on tin sulphide nanostructures. J. Alloys Comp. 735, 2256–2262 (2018)

    Article  CAS  Google Scholar 

  33. F. Lu, J. Yang, R. Li, N. Huo, Y. Li, Z. Wei, J. Li, Gas-dependent photoresponse of SnS nanoparticles-based photodetector. J. Mater. Chem. C 3, 1397–1402 (2015)

    Article  CAS  Google Scholar 

  34. S.S. Hegde, A.G. Kunjomana, K. Ramesh, K.A. Chandrasekharan, M. Prashantha, Preparation and characterization of SnS thin films for solar cell application Inter. J. Soft Comp. Eng. (IJSCE) 1, 38–40 (2011)

    Google Scholar 

  35. S.S. Hegde, A.G. Kunjomana, P. Murahari, B.K. Prasad, K. Ramesh, Vacuum annealed tin sulfide (SnS) thin films for solar cell applications. Surf. Interfaces 10, 78–84 (2018)

    Article  CAS  Google Scholar 

  36. P. Jain, P. Arun, Influence of grain size on the band-gap of annealed SnS thin films. Thin Solid Films 548, 241–246 (2013)

    Article  CAS  Google Scholar 

  37. R. Naik, P.P. Sahoo, C. Sripan, R. Ganesan, Laser induced Bi diffusion in As40S60 thin films and the optical properties change probed by FTIR and XPS. Opt. Mater. 62, 211–218 (2016)

    Article  CAS  Google Scholar 

  38. D. Sahoo, P. Priyadarshini, R. Dandela, D. Alagarasan, R. Ganesan, S. Vardharajperumal, R. Naik, Optimization of linear and nonlinear optical parameters in As40Se60 film by annealing at different temperature. Optik 219, 165286 (2020)

    Article  CAS  Google Scholar 

  39. M. Behera, N.C. Mishra, R. Naik, C. Sripan, R. Ganesan, Thermal annealing induced structural, optical and electrical properties change in As40Se60-xBix chalcogenide thin films. AIP Adv. 9, 095065 (2019)

    Article  Google Scholar 

  40. J. Xu, Y. Yang, Z. Xie, Effect of vacuum annealing on the properties of sputtered SnS thin films. Chalcogenide Lett. 11, 485–491 (2014)

    Google Scholar 

  41. T. Gotoh, Control of carrier concentration in SnS films by annealing with S and Sn. Phys. Status Solidi A 213, 1869–1872 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to thank the Department of Physics, Centre for Nano Science and Engineering (CeNSE), IISc, Bengaluru, Karnataka, 560012 India for providing fabrication and characterization facilities. Ehab El Sayed Massoud would like to express his gratitude to the Deanship of Scientific Research at King Khalid University, Abha, Saudi Arabia, for funding part of this work through Research Groups Program under Grant No. R.G.P.2/70/42.

Author information

Authors and Affiliations

Authors

Contributions

DA: original draft, Software, Data curation, Investigation. SSH: Visualization, Experiments. SV: Experiments. KDAK: Visualization, Experiments. RN: Visualization, Methodology, Experiments. SPP: Experiments. MEESM: Experiments. RG: Conceptualization, Methodology, Writing—review & editing, Supervision.

Corresponding authors

Correspondence to Devarajan Alagarasan or R. Ganesan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does noy contain any studies involving animals performed by any of the authors. Also, this article does not contain any studies involving human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alagarasan, D., Hegde, S.S., Varadharajaperumal, S. et al. Effect of annealing temperature on SnS thin films for photodetector applications. J Mater Sci: Mater Electron 33, 4794–4805 (2022). https://doi.org/10.1007/s10854-021-07668-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07668-7

Navigation