Skip to main content
Log in

Down-shifting photoluminescence studies of thermally stable Dy3+ ions doped borosilicate glasses for optoelectronic device applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this research work, Dy3+ doped alkali zinc alumino borosilicate (AZABS) glasses have been prepared via melt quenching technique. A series of AZABS glasses of varying concentrations of dysprosium (Dy3+) (0.1–2.5 mol%) was prepared. It was found that under UV excitation, 0.5 mol% Dy3+ doped glass exhibited maximum luminescence intensity. Subsequent photoluminescence studies like emission/excitation spectra, temperature-dependent photoluminescence and decay kinetics were also performed. The value of direct bandgap as calculated from Tauc Plot for 0.5 mol% of Dy3+ ions doped AZABS glass is 2.85 eV. Yellow to blue ratio and colorimetry analysis have showed that the as-prepared glasses are capable of producing cool white light. Application of Dexter theory showed that the energy transfer mechanism between the dopant ions in the glass matrix was of dipole–dipole nature. It is proposed that these Dy3+ doped AZABS glasses can be used as prospective materials in optoelectronic device applications such as solid-state lighting and w-LEDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author, [Prof. A.S. Rao]. The data are not publicly available due to restrictions, e.g. their containing information that could compromise the privacy of research participants.

References

  1. K. Swapna, S. Mahamuda, A.S. Rao, T. Sasikala, P. Packiyaraj, L.R. Moorthy, G.V. Prakash, Luminescence characterization of Eu3+ doped zinc alumino bismuth borate glasses for visible red emission applications. J. Lumin. 156, 80–86 (2014). https://doi.org/10.1016/j.jlumin.2014.07.022

    Article  CAS  Google Scholar 

  2. K. Annapoorani, K. Marimuthu, Spectroscopic properties of Eu3+ ions doped Barium telluroborate glasses for red laser applications. J. Non-Cryst. Solids 463, 148–157 (2017). https://doi.org/10.1016/j.jnoncrysol.2017.03.004

    Article  CAS  Google Scholar 

  3. S. Arunkumar, K. Marimuthu, Structural and luminescence studies on Eu3+: B2O3-Li2O-MO-LiF (M=Ba, Bi, Pb and Zn) glasses. AIP Conf. Proc. 1447, 573–574 (2012). https://doi.org/10.1063/1.4710133

    Article  CAS  Google Scholar 

  4. S. Mahamuda, K. Swapna, M. Venkateswarlu, A. Srinivasa Rao, S. Shakya, G. Vijaya Prakash, Spectral characterisation of Sm3+ ions doped Oxy-fluoroborate glasses for visible orange luminescent applications. J. Lumin. 154, 410–424 (2014). https://doi.org/10.1016/j.jlumin.2014.05.017

    Article  CAS  Google Scholar 

  5. S. Mahamuda, K. Swapna, A. Srinivasa Rao, T. Sasikala, L. Rama Moorthy, Reddish-orange emission from Pr3+ doped zinc alumino bismuth borate glasses. Phys. B Condens. Matter 428, 36–42 (2013). https://doi.org/10.1016/j.physb.2013.07.010

    Article  CAS  Google Scholar 

  6. A.K. Vishwakarma, M. Jayasimhadri, Pure orange color emitting Sm3+ doped BaNb2O6 phosphor for solid—state lighting applications. J. Lumin. 176, 112–117 (2016). https://doi.org/10.1016/j.jlumin.2016.03.025

    Article  CAS  Google Scholar 

  7. C.B. Annapurna Devi, S. Mahamuda, M. Venkateswarlu, K. Swapna, A. Srinivasa Rao, G. Vijaya Prakash, Dy3+ ions doped single and mixed alkali fluoro tungsten tellurite glasses for LASER and white LED applications. Opt. Mater. (Amst.) 62, 569–577 (2016). https://doi.org/10.1016/j.optmat.2016.11.016

    Article  CAS  Google Scholar 

  8. N. Deopa, A.S. Rao, S. Mahamuda, M. Gupta, M. Jayasimhadri, D. Haranath, G.V. Prakash, Spectroscopic studies of Pr3+ doped lithium lead alumino borate glasses for visible reddish orange luminescent device applications. J. Alloys Compd. 708, 911–921 (2017). https://doi.org/10.1016/j.jallcom.2017.03.020

    Article  CAS  Google Scholar 

  9. R. Bajaj, M. Gupta, R. Nagarajan, A.S. Rao, G.V. Prakash, Strong structural phase sensitive rare-earth photoluminescence color flips in KLaF4:RE3+ (RE3+ = Eu3+, Er3+/Yb3+) nanocrystals. Dalton Trans. (2020). https://doi.org/10.1039/d0dt01179g

    Article  Google Scholar 

  10. Y. Qiao, P. Chen, Luminescence, energy transfer, and color adjustment of CaO-CaF2-Al2O3 glass co-doped with CeO2 and Sm2O3. J. Non-Cryst. Solids 552, 120461 (2021). https://doi.org/10.1016/j.jnoncrysol.2020.120461

    Article  CAS  Google Scholar 

  11. J. Dahiya, A. Hooda, A. Agarwal, S. Khasa, Tuneable colour flexibility in Dy3+ & Eu3+ co-doped lithium fluoride bismuth borate glass system for solid state lighting applications. J. Non-Cryst. Solids 576, 121237 (2022). https://doi.org/10.1016/j.jnoncrysol.2021.121237

    Article  CAS  Google Scholar 

  12. R.H.A. Bergh, G. Craford, A. Duggal, The promise and challenge of solid-state lighting. Phys. Today 54, 42–47 (2001). https://doi.org/10.1063/1.1445547

    Article  CAS  Google Scholar 

  13. G. Zissis, Energy consumption and environmental and economic impact of lighting: the current situation. Handb. Adv. Light. Technol. (2017). https://doi.org/10.1007/978-3-319-00176-0

    Article  Google Scholar 

  14. N. Deopa, A.S. Rao, Photoluminescence and energy transfer studies of Dy3+ ions doped lithium lead alumino borate glasses for w-LED and laser applications. J. Lumin. 192, 832–841 (2017). https://doi.org/10.1016/j.jlumin.2017.07.052

    Article  CAS  Google Scholar 

  15. K. Jha, M. Jayasimhadri, Spectroscopic investigation on thermally stable Dy3+ doped zinc phosphate glass for white light emitting diodes. J. Alloys Compd. 688, 833–840 (2016). https://doi.org/10.1016/j.jallcom.2016.07.024

    Article  CAS  Google Scholar 

  16. K. Jha, A.K. Vishwakarma, M. Jayasimhadri, D. Haranath, Multicolor and white light emitting Tb3+/Sm3+ co-doped zinc phosphate barium titanate glasses via energy transfer for optoelectronic device applications. J. Alloys Compd. 719, 116–124 (2017). https://doi.org/10.1016/j.jallcom.2017.05.076

    Article  CAS  Google Scholar 

  17. H. Masai, Y. Yamada, Y. Suzuki, K. Teramura, Y. Kanemitsu, T. Yoko, Narrow energy gap between triplet and singlet excited states of SN2+ in borate glass. Sci. Rep. 3, 1–7 (2013). https://doi.org/10.1038/srep03541

    Article  Google Scholar 

  18. Y. Zhang, C. Lu, L. Sun, Z. Xu, Y. Ni, Influence of Sm2O3 on the crystallization and luminescence properties of boroaluminosilicate glasses. Mater. Res. Bull. 44, 179–183 (2009). https://doi.org/10.1016/j.materresbull.2008.03.004

    Article  CAS  Google Scholar 

  19. H.M. Gomaa, H.A. Saudi, I.S. Yahia, M.A. Ibrahim, H.Y. Zahran, Optik Influence of exchanging CeO2 with Cu2O3 on structural matrix, shielding, and linear / nonlinear optical parameters of the cerium-sodium borate glass. Optik (Stuttg.) 249, 168267 (2022). https://doi.org/10.1016/j.ijleo.2021.168267

    Article  Google Scholar 

  20. N.S. Prabhu, V. Hegde, A. Wagh, M.I. Sayyed, O. Agar, S.D. Kamath, Physical, structural and optical properties of Sm3+ doped lithium zinc alumino borate glasses. J. Non-Cryst. Solids 515, 116–124 (2019). https://doi.org/10.1016/j.jnoncrysol.2019.04.015

    Article  CAS  Google Scholar 

  21. J. Rajagukguk, J. Kaewkhao, M. Djamal, R. Hidayat, Suprijadi, Y. Ruangtaweep, Structural and optical characteristics of Eu3+ ions in sodium-lead-zinc-lithium-borate glass system. J. Mol. Struct. 1121, 180–187 (2016). https://doi.org/10.1016/j.molstruc.2016.05.048

    Article  CAS  Google Scholar 

  22. W. Bao, X. Yu, T. Wang, H. Zhang, C. Su, Tb3+ / Eu3+ co-doped Al2O3 – B2O3 – SrO glass ceramics: preparation, structure and luminescence properties. Opt. Mater. (Amst.) 122, 111772 (2021). https://doi.org/10.1016/j.optmat.2021.111772

    Article  Google Scholar 

  23. N. Deopa, A.S. Rao, Spectroscopic studies of Sm3+ ions activated lithium lead alumino borate glasses for visible luminescent device applications. Opt. Mater. (Amst) 72, 31–39 (2017). https://doi.org/10.1016/j.optmat.2017.04.067

    Article  CAS  Google Scholar 

  24. H. Gui, C. Li, C. Lin, Q. Zhang, Z. Luo, L. Han, J. Liu, T. Liu, A. Lu, Glass forming, crystallization, and physical properties of MgO-Al2O3-SiO2-B2O3 glass-ceramics modified by ZnO replacing MgO. J. Eur. Ceram. Soc. 39, 1397–1410 (2019). https://doi.org/10.1016/j.jeurceramsoc.2018.10.002

    Article  CAS  Google Scholar 

  25. N.F. Yusof, K.H.K. Bulat, N.A. Badarulzaman, M.A.A.M. Nor, The effect of boron oxide on concentration of iron ion released from SiO2-B2O3-Na2CO3-Fe2O3 Glass System. Int. J. Curr. Res. Sci. Eng. Technol. 1, 130 (2018). https://doi.org/10.30967/ijcrset.1.s1.2018.130-134

    Article  Google Scholar 

  26. N. Deopa, S. Saini, S. Kaur, A. Prasad, A.S. Rao, Spectroscopic investigations on Dy3+ ions doped zinc lead alumino borate glasses for photonic device applications. J. Rare Earths 37, 52–59 (2019). https://doi.org/10.1016/j.jre.2018.04.013

    Article  CAS  Google Scholar 

  27. M.H.A. Mhareb, M. Alqahtani, F. Alshahri, Y.S.M. Alajerami, N. Saleh, N. Alonizan, M.I. Sayyed, M.G.B. Ashiq, T. Ghrib, S.I. Al-Dhafar, T. Alayed, M.A. Morsy, The impact of barium oxide on physical, structural, optical, and shielding features of sodium zinc borate glass. J. Non-Cryst. Solids. 541, 120090 (2020). https://doi.org/10.1016/j.jnoncrysol.2020.120090

    Article  CAS  Google Scholar 

  28. J. Rajagukguk, B. Sinaga, J. Kaewkhao, Structural and spectroscopic properties of Er3+ doped sodium lithium borate glasses, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 223, 117342 (2019). https://doi.org/10.1016/j.saa.2019.117342

    Article  CAS  Google Scholar 

  29. K. Swapna, S. Mahamuda, A. Srinivasa-Rao, M. Jayasimhadri, T. Sasikala, L. Rama-Moorthy, Visible fluorescence characteristics of Dy3+ doped zinc alumino bismuth borate glasses for optoelectronic devices. Ceram. Int. 39, 8459–8465 (2013). https://doi.org/10.1016/j.ceramint.2013.04.028

    Article  CAS  Google Scholar 

  30. N. Kiran, A. Suresh Kumar, White light emission from Dy3+ doped sodium-lead borophosphate glasses under UV light excitation. J. Mol. Struct. 1054–1055, 6–11 (2013). https://doi.org/10.1016/j.molstruc.2013.09.023

    Article  CAS  Google Scholar 

  31. A.M. Babu, B.C. Jamalaiah, J.S. Kumar, T. Sasikala, L.R. Moorthy, Spectroscopic and photoluminescence properties of Dy3+-doped lead tungsten tellurite glasses for laser materials. J. Alloys Compd. 509, 457–462 (2011). https://doi.org/10.1016/j.jallcom.2010.09.058

    Article  CAS  Google Scholar 

  32. R. Bajaj, A.S. Rao, G.V. Prakash, Photoluminescence down-shifting studies of thermally stable Eu3+ ions doped borosilicate glasses for visible red photonic device applications. J. Non-Cryst. Solids. 575, 121184 (2022). https://doi.org/10.1016/j.jnoncrysol.2021.121184

    Article  CAS  Google Scholar 

  33. S. Hemalatha, M. Nagaraja, A. Madhu, K. Suresh, N. Srinatha, Spectroscopic studies of transition metal ion-doped borate glasses for optical applications. Mater. Today Proc. (2021). https://doi.org/10.1016/j.matpr.2021.08.075

    Article  Google Scholar 

  34. W.T. Carnall, P.R. Fields, K. Rajnak, Electronic energy levels of the trivalent lanthanide aquo ions. IV. Eu8+. J. Chem. Phys. 49, 4424–4442 (1968). https://doi.org/10.1063/1.1669893

    Article  CAS  Google Scholar 

  35. P. Rekha Rani, M. Venkateswarlu, S. Mahamuda, K. Swapna, N. Deopa, A.S. Rao, Spectroscopic studies of Dy3+ ions doped barium lead alumino fluoro borate glasses. J. Alloys Compd. 787, 503–518 (2019). https://doi.org/10.1016/j.jallcom.2019.02.088

    Article  CAS  Google Scholar 

  36. H. George, N. Deopa, S. Kaur, A. Prasad, M. Sreenivasulu, M. Jayasimhadri, A.S. Rao, Judd-Ofelt parametrization and radiative analysis of Dy3+ ions doped sodium bismuth strontium phosphate glasses. J. Lumin. (2019). https://doi.org/10.1016/j.jlumin.2019.116693

    Article  Google Scholar 

  37. S. Kaur, M. Jayasimhadri, A.S. Rao, A novel red emitting Eu3+doped calcium aluminozincate phosphor for applications in w-LEDs. J. Alloys Compd. 697, 367–373 (2017). https://doi.org/10.1016/j.jallcom.2016.12.150

    Article  CAS  Google Scholar 

  38. A.K. Vishwakarma, M. Jayasimhadri, Significant enhancement in photoluminescent properties via flux assisted Eu3+ doped BaNb2O6 phosphor for white LEDs. J. Alloys Compd. 683, 379–386 (2016). https://doi.org/10.1016/j.jallcom.2016.05.052

    Article  CAS  Google Scholar 

  39. M. Reddi Babu, N. Madhusudhana Rao, A. Mohan Babu, N. Jaidass, C. Krishna Moorthy, L. Rama Moorthy, Effect of Dy3+ ions concentration on optical properties of lead borosilicate glasses for white light emission. Optik (Stuttg) 127, 3121–3126 (2016). https://doi.org/10.1016/j.ijleo.2015.12.018

    Article  CAS  Google Scholar 

  40. C.R. Kesavulu, H.J. Kim, S.W. Lee, J. Kaewkhao, N. Chanthima, Y. Tariwong, Physical, vibrational, optical and luminescence investigations of Dy3+-doped yttrium calcium silicoborate glasses for cool white LED applications. J. Alloys Compd. 726, 1062–1071 (2017). https://doi.org/10.1016/j.jallcom.2017.08.091

    Article  CAS  Google Scholar 

  41. L. Mishra, A. Sharma, A.K. Vishwakarma, K. Jha, M. Jayasimhadri, B.V. Ratnam, K. Jang, A.S. Rao, R.K. Sinha, White light emission and color tunability of dysprosium doped barium silicate glasses. J. Lumin. 169, 121–127 (2016). https://doi.org/10.1016/j.jlumin.2015.08.063

    Article  CAS  Google Scholar 

  42. D.L. Dexter, A theory of sensitized luminescence in solids. J. Chem. Phys. 21, 836–850 (1953). https://doi.org/10.1063/1.1699044

    Article  CAS  Google Scholar 

  43. D.L. Dexter, J.H. Schulman, Theory of concentration quenching in inorganic phosphors. J. Chem. Phys. 22, 1063–1070 (1954). https://doi.org/10.1063/1.1740265

    Article  CAS  Google Scholar 

  44. K. Linganna, C.S. Rao, C.K. Jayasankar, Optical properties and generation of white light in Dy3+-doped lead phosphate glasses. J. Quant. Spectrosc. Radiat. Transf. 118, 40–48 (2013). https://doi.org/10.1016/j.jqsrt.2012.12.002

    Article  CAS  Google Scholar 

  45. M.K. Sahu, M. Jayasimhadri, Conversion of blue emitting thermally stable Ca3Bi(PO4)3 host as a color tunable phosphor via energy transfer for luminescent devices. J. Lumin. 227, 117570 (2020). https://doi.org/10.1016/j.jlumin.2020.117570

    Article  CAS  Google Scholar 

  46. A. Prasad, A.S. Rao, M. Gupta, G.V. Prakash, Morphological and luminescence studies on KGdF4:Yb3+/Tb3+ up-conversion nanophosphors. Mater. Chem. Phys. 219, 13–21 (2018). https://doi.org/10.1016/j.matchemphys.2018.07.056

    Article  CAS  Google Scholar 

  47. A. Prasad, A.S. Rao, G.V. Prakash, A study on up-conversion and energy transfer kinetics of KGdF4: Yb3+ / Er3+ nanophosphors. J. Mol. Struct. 1205, 127647 (2020). https://doi.org/10.1016/j.molstruc.2019.127647

    Article  CAS  Google Scholar 

  48. C.S. McCamy, Correlated color temperature as an explicit function of chromaticity coordinates. Color Res. Appl. 17, 142–144 (1992). https://doi.org/10.1002/col.5080170211

    Article  Google Scholar 

  49. L. Wang, M. Xu, H. Zhao, D. Jia, Luminescence, energy transfer and tunable color of Ce3+, Dy3+/Tb3+ doped BaZn2(PO4)2 phosphors. New J. Chem. 40, 3086–3093 (2016). https://doi.org/10.1039/c5nj03148f

    Article  CAS  Google Scholar 

  50. D. Xu, Z. Yang, J. Sun, X. Gao, J. Du, Synthesis and luminescence properties of double-perovskite white emitting phosphor Ca3WO6:Dy3+. J. Mater. Sci. Mater. Electron. 27, 8370–8377 (2016). https://doi.org/10.1007/s10854-016-4848-z

    Article  CAS  Google Scholar 

  51. M.K. Sahu, J. Mula, White light emitting thermally stable bismuth phosphate phosphor Ca3Bi(PO4)3:Dy3+ for solid-state lighting applications. J. Am. Ceram. Soc. 102, 6087–6099 (2019). https://doi.org/10.1111/jace.16479

    Article  CAS  Google Scholar 

  52. R. Bajaj, A.S. Rao, G.V. Prakash, Linear and nonlinear photoluminescence from thermally stable KYF4:Eu3+ cubic nanocrystals. J. Alloys Compd. 885, 160893 (2021). https://doi.org/10.1016/j.jallcom.2021.160893

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work reported in this paper has been partially supported by a Major Research Project (EMR/2016/007766) sanctioned by SERB, Department of Science and Technology, Govt. of India, New Delhi. Dr. Sumandeep Kaur is grateful to CSIR, New Delhi for the award of Research Associate fellowship (08/133(0053) 2020-EMR-I).

Author information

Authors and Affiliations

Authors

Contributions

RB: Work plan, experimental work, manuscript writing. AP: Experimental Help, calculations. AVSY: Experimental Help, calculations. PR: Experimental Help, calculations. SK: Validation of results, Manuscript correction. ASR: Work plan, validation of results, manuscript correction.

Corresponding author

Correspondence to A. S. Rao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bajaj, R., Prasad, A., Yeswanth, A.V.S. et al. Down-shifting photoluminescence studies of thermally stable Dy3+ ions doped borosilicate glasses for optoelectronic device applications. J Mater Sci: Mater Electron 33, 4782–4793 (2022). https://doi.org/10.1007/s10854-021-07667-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07667-8

Navigation