Skip to main content
Log in

Optimization of the NiFe/Cu multilayer structure using magnetron sputtering for electromagnetic interference shielding in high-frequency bands

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, NiFe/Cu multilayer structures were fabricated using a sputtering method. The electromagnetic interference shielding effectiveness (EMI SE) of symmetrical and asymmetric structures of 4 μm NiFe/Cu multilayers was evaluated to optimize their performance. In addition to the number of layers, a decrease in the electrical conductivity of each Cu layer led to a decrease in the EMI SE. In the multilayer structure with a 100 nm NiFe layer, an EMI SE ranging from − 75 to − 73 dB was obtained in the wideband owing to the increase in the thickness of each Cu layer within the multilayer. In contrast, when the thickness of the NiFe layers was 500 nm, the improvement in the EMI SE was negligible owing to the decrease in the electrical conductivity difference between the NiFe and Cu layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets supporting the conclusions of this article are included within the article.

References

  1. N. Chikyu, T. Nakano, G. Kletetschka, Y. Inoue, Mater. Des. 195, 108918 (2020)

    Article  CAS  Google Scholar 

  2. B. Zhao, M. Hamidinejad, S. Wang, P. Bai, R. Che, R. Zhang, C.B. Park, J. Mater. Chem. A 9, 8896 (2021)

    Article  CAS  Google Scholar 

  3. G.H. Lim, N. Kwon, E. Han, S. Bok, S.E. Lee, B. Lim, J. Ind. Eng. Chem. 93, 245 (2021)

    Article  CAS  Google Scholar 

  4. A.O. Watanabe, P.M. Raj, D. Wong, R. Mullapudi, R. Tummala, J. Electron. Mater. 47, 5243 (2018)

    Article  CAS  Google Scholar 

  5. J.H. Park, J.W. Lee, H.J. Choi, W.G. Jang, T.S. Kim, D.S. Suh, H.Y. Jeong, S.Y. Chang, J.C. Roh, C.S. Yoo, K.H. Kim, C. Park, S.J. Suh, Thin Solid Films 677, 130 (2019)

    Article  CAS  Google Scholar 

  6. Henry W. Ott Electromagnetic Compatibility Engineering

  7. F. Fang, Y.Q. Li, H.M. Xiao, N. Hu, S.Y. Fu, J. Mater. Chem. C 4, 4193 (2016)

    Article  CAS  Google Scholar 

  8. Z. Dou, G. Wu, X. Huang, D. Sun, L. Jiang, Compos. Part A 38, 186 (2007)

    Article  Google Scholar 

  9. H. Zhao, L. Hou, S. Bi, Y. Lu, ACS Appl. Mater. Interfaces 9, 33059 (2017)

    Article  CAS  Google Scholar 

  10. J. Joo, C.Y. Lee, J. Appl. Phys. 88, 513 (2000)

    Article  CAS  Google Scholar 

  11. Z. Yang, H. Peng, W. Wang, T. Liu, J. Appl. Polym. Sci. 116, 2658 (2010)

    CAS  Google Scholar 

  12. J.-H. Park, S. Lee, J. Chul Ro, S.-J. Suh, Appl. Surf. Sci. 573, 151469 (2022)

    Article  CAS  Google Scholar 

  13. D. Wanasinghe, F. Aslani, Compos. B 176, 107207 (2019)

    Article  CAS  Google Scholar 

  14. B. Zhao, J. Deng, C. Zhao, C. Wang, Y.G. Chen, M. Hamidinejad, R. Li, C.B. Park, J. Mater. Chem. C 8, 58 (2020)

    Article  CAS  Google Scholar 

  15. M. Hamidinejad, B. Zhao, A. Zandieh, N. Moghimian, T. Filleter, C.B. Park, ACS Appl. Mater. Interfaces 10, 30752 (2018)

    Article  CAS  Google Scholar 

  16. Z. Xu, H. Hao, J. Alloys Compd. 617, 207 (2014)

    Article  CAS  Google Scholar 

  17. P.S. Liu, H.B. Qing, H.L. Hou, Y.Q. Wang, Y.L. Zhang, Mater. Des. 92, 823 (2016)

    Article  CAS  Google Scholar 

  18. Z.-H. Zhou, Y. Liang, H.-D. Huang, L. Li, B. Yang, M.-Z. Li, D.-X. Yan, J. Lei, Z.-M. Li, Carbon N. Y. 152, 316 (2019)

    Article  CAS  Google Scholar 

  19. H. Mei, X. Zhao, J. Xia, F. Wei, D. Han, S. Xiao, L. Cheng, Mater. Des. 144, 323 (2018)

    Article  CAS  Google Scholar 

  20. C. Xing, S. Zhu, Z. Ullah, X. Pan, F. Wu, X. Zuo, J. Liu, M. Chen, W. Li, Q. Li, L. Liu, Appl. Surf. Sci. 491, 616 (2019)

    Article  CAS  Google Scholar 

  21. S. Sankaran, K. Deshmukh, M.B. Ahamed, S.K. Khadheer Pasha, Compos. A 114, 49 (2018)

    Article  CAS  Google Scholar 

  22. J.H. Hubbell, S.M. Seltzer. http://physics.nist.gov/PhysRefData/XrayMassCoef/cover.html. Accessed 29 Oct 2021

  23. M. Nauer, K. Ernst, W. Kautek, M. Neumann-Spallart, Thin Solid Films 489, 86 (2005)

    Article  CAS  Google Scholar 

  24. Y.I. Kim, K.B. Kim, M. Kim, J. Mater. Sci. Technol. 51, 193 (2020)

    Article  Google Scholar 

  25. C.Y. Lee, H.G. Song, K.S. Jang, E.J. Oh, A.J. Epstein, J. Joo, Synth. Met. 102, 1346 (1999)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the GRRC (Gyeonggi Regional Research Center) program of Gyeonggi province (GRRC Sungkyunkwan 2017-B02).

Author information

Authors and Affiliations

Authors

Contributions

J-HP: Conceptualization, data curation, formal analysis, investigation, writing, review, and editing. JCR: Formal analysis. S-JS: Resources, supervision, writing—Review and Editing.

Corresponding author

Correspondence to Su Jeong Suh.

Ethics declarations

Conflict of interest

All the authors have no competing interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 320 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, JH., Ro, J.C. & Suh, S.J. Optimization of the NiFe/Cu multilayer structure using magnetron sputtering for electromagnetic interference shielding in high-frequency bands. J Mater Sci: Mater Electron 33, 4064–4071 (2022). https://doi.org/10.1007/s10854-021-07599-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07599-3

Navigation