Skip to main content
Log in

Effect of Al substitution and secondary CuO phase on dielectric response in microwave-processed CaCu3Ti4−xAlxO12 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

High dielectric loss is a major drawback in CCTO-based electroceramics, and such high dielectric loss supports good microwave coupling for microwave synthesis of ceramics. Al substitution at Ti site and presence of moderate amount of secondary CuO intergranular melt-like phase can improve the dielectric properties of the ceramics. Therefore, microwave-assisted solid-state reaction was used to synthesize polycrystalline CaCu3Ti4−xAlxO12 (x = 0, 0.025, 0.05, 0.075, 0.1) ceramics. Lattice parameters and different amount of CuO phase were extracted from X-ray diffraction data via Rietveld refinement. Presence of grains with different morphology, and different kind of interfaces were confirmed through microstructure evolution. An approximate elemental analysis was revealed through selective area EDX. Variations in dielectric and impedance properties with frequency and temperature were investigated as an effect of Al3+ substitution at Ti4+ sites and appearance of secondary CuO phase. Maximum dielectric constant (εr) ~ 23,000 with ‘tan δ’ ~ 0.076 at 100 Hz has been observed for x = 0.05 ceramics at room temperature. Equivalent electrical circuits were proposed to understand the contributions arising from different electrically heterogeneous portions of CCTO-based ceramics. An elementary theoretical framework, based on different grains and interfaces (boundaries), has been proposed to understand the improved dielectric properties. Activation energies were calculated from imaginary part of impedance (Z″) and modulus (M″) functions and the values were in close agreement with activation energies associated to oxygen vacancies. In addition, defect chemistry has been discussed to understand the appearance of CuO phase as melt and the improvement of dielectric loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Authors certify to accept the research data policy of Journal of Materials Science: Materials in Electronics and the data will be provided on request.

References

  1. B. Samanta, D. Nanda, P. Kumar, R. Sahu, S. Swain, A. Mahapatra, Process. Appl. Ceram. 13, 387 (2019)

    Google Scholar 

  2. A.P. Ramirez, M.A. Subramanian, M. Gardel, G. Blumberg, D. Li, T. Vogt, S.M. Shapiro, Solid State Commun. 115, 217 (2000)

    CAS  Google Scholar 

  3. D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West, Appl. Phys. Lett. 80, 2153 (2002)

    CAS  Google Scholar 

  4. T.B. Adams, D.C. Sinclair, A.R. West, Phys. Rev. B—Condens. Matter Mater. Phys. 73, 1 (2006)

    Google Scholar 

  5. P. Thomas, L.N. Sathapathy, K. Dwarakanath, K.B.R. Varma, Bull. Mater. Sci 30, 567 (2007)

    CAS  Google Scholar 

  6. B. Samanta, P. Kumar, C. Prakash, Ferroelectrics 517, 46 (2017)

    CAS  Google Scholar 

  7. W. Makcharoen, W. Punsawat, Mater. Today Proc. 4, 6234–6238 (2017)

    Google Scholar 

  8. M. Gao, D. Feng, G. Yao, Y. Zhang, C.L. Chen, Y. Lin, RSC Adv. 5, 92958 (2015)

    CAS  Google Scholar 

  9. R. Schmidt, D.C. Sinclair, Chem. Mater 22, 6 (2010)

    CAS  Google Scholar 

  10. A. Srivastava, K. Kumar Jana, P. Maiti, D. Kumar, O. Parkash, J. Compos. (2014). https://doi.org/10.1155/2015/205490

    Article  Google Scholar 

  11. L. Shengtao, W. Hui, L. Chunjiang, Y. Yang, L. Jianying, Conf. Proc. ISEIM2011 (2011)

  12. N.A. Zhuk, S.V. Nekipelov, V.N. Sivkov, B.A. Makeev, R.I. Korolev, V.A. Belyy, M.G. Krzhizhanovskaya, M.M. Ignatova, Mater. Chem. Phys. 252, 123310 (2020)

    CAS  Google Scholar 

  13. J. Jumpatam, B. Putasaeng, T. Yamwong, P. Thongbai, S. Maensiri, Ceram. Int. 39, 1057 (2013)

    CAS  Google Scholar 

  14. L. Sun, R. Zhang, Z. Wang, E. Cao, Y. Zhang, L. Ju, RSC Adv. 6, 55984 (2016)

    CAS  Google Scholar 

  15. L. Singh, I.W. Kim, B.C. Sin, K.D. Mandal, U.S. Rai, A. Ullah, H. Chung, Y. Lee, RSC Adv. 4, 52770 (2014)

    CAS  Google Scholar 

  16. A.K. Mishra, D. Dwibedy, M. Devi, M.R. Panigrahi, Trans. Electr. Electron. Mater. 21, 315 (2020)

    Google Scholar 

  17. P. Thongbai, J. Jumpatam, T. Yamwong, S. Maensiri, J. Eur. Ceram. Soc. 32, 2423 (2012)

    CAS  Google Scholar 

  18. L. Singh, B.C. Sin, I.W. Kim, K.D. Mandal, H. Chung, Y. Lee, J. Am. Ceram. Soc. 99, 27 (2016)

    CAS  Google Scholar 

  19. R. Jia, X. Zhao, J. Li, X. Tang, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 185, 79 (2014)

    CAS  Google Scholar 

  20. S. Li, W. Hui, C. Lin, Y. Yang, and J. Li, Proc. Int. Symp. Electr. Insul. Mater. 23 (2011)

  21. S.W. Choi, S.H. Hong, Y.M. Kim, J. Am. Ceram. Soc. 90, 4009 (2007)

    CAS  Google Scholar 

  22. W.X. Yuan, Z. Luo, C. Wang, J. Alloys Compd. 562, 1 (2013)

    CAS  Google Scholar 

  23. S.Y. Lee, Y.H. Kim, K.J. Choi, S.M. Jung, S.I. Yoo, Thin Solid Films 518, 5711 (2010)

    CAS  Google Scholar 

  24. W.X. Yuan, S.K. Hark, W.N. Mei, J. Ceram. Process. Res. 10, 696 (2009)

    Google Scholar 

  25. W.X. Yuan, Solid State Sci. 14, 330 (2012)

    CAS  Google Scholar 

  26. T.T. Fang, L.T. Mei, J. Am. Ceram. Soc. 90, 638 (2007)

    CAS  Google Scholar 

  27. T.T. Fang, L.T. Mei, H.F. Ho, Acta Mater. 54, 2867 (2006)

    CAS  Google Scholar 

  28. T.-T. Fang, C.P. Liu, Chem. Mater. 17, 5167 (2005)

    CAS  Google Scholar 

  29. S. Sarkar, P.K. Jana, B.K. Chaudhuri, H. Sakata, Appl. Phys. Lett. 89, 212905 (2006)

    Google Scholar 

  30. S. Sarkar, P.K. Jana, B.K. Chaudhuri, Appl. Phys. Lett. 92, 022905 (2008)

    Google Scholar 

  31. http://abulafia.mt.ic.ac.uk/shannon/ptable.php

  32. T.B. Adams, D.C. Sinclair, A.R. West, J. Am. Ceram. Soc. 89, 2833 (2006)

    CAS  Google Scholar 

  33. M.N. Zhang, K.B. Xu, G.J. Wang, C.C. Wang, Chinese Sci. Bull. 58, 713 (2013)

    CAS  Google Scholar 

  34. A.K. Thomas, K. Abraham, J. Thomas, K.V. Saban, J. Asian Ceram. Soc. 5, 56 (2017)

    Google Scholar 

  35. S. Ke, H. Huang, H. Fan, Appl. Phys. Lett. 89, 182904 (2006)

    Google Scholar 

  36. W. Heywang, J. Mater. Sci. 6, 1214 (1971)

    CAS  Google Scholar 

  37. G.H. Jonker, Solid State Electron. 7, 895 (1964)

    CAS  Google Scholar 

  38. B. Behera, P. Nayak, R.N.P. Choudhary, J. Alloys Compd. 436, 226 (2007)

    CAS  Google Scholar 

  39. S. Lanfredi, J.F. Carvalho, A.C. Hernandes, J. Appl. Phys. 88, 283 (2000)

    CAS  Google Scholar 

  40. A.R. James, S. Priya, K. Uchino, K. Srinivas, J. Appl. Phys. 90, 3504 (2001)

    CAS  Google Scholar 

  41. A. Sen, U.N. Maiti, R. Thapa, K.K. Chattopadhyay, Appl. Phys. A Mater. Sci. Process. 104, 1105 (2011)

    CAS  Google Scholar 

  42. D. Li, X.P. Wang, Q.F. Fang, J.X. Wang, C. Li, Z. Zhuang, Phys. Status Solidi 204, 2270 (2007)

    CAS  Google Scholar 

  43. A. Bagum, M.B. Hossen, F.U.Z. Chowdhury, Ferroelectrics 494, 19 (2016)

    CAS  Google Scholar 

  44. A. Shukla, R.N.P. Choudhary, A.K. Thakur, J. Phys. Chem. Solids 70, 1401 (2009)

    CAS  Google Scholar 

  45. R. Tang, C. Jiang, W. Qian, J. Jian, X. Zhang, H. Wang, H. Yang, Sci. Rep. 5, 1–11 (2015)

    CAS  Google Scholar 

  46. B.V.R. Chowdari, R. Gopalakrishnan, Solid State Ionics 23, 225 (1987)

    CAS  Google Scholar 

  47. X.J. Luo, Y.S. Liu, C.P. Yang, S.S. Chen, S.L. Tang, K. Bärner, J. Eur. Ceram. Soc. 35, 2073–2081 (2015)

    CAS  Google Scholar 

  48. M.A.L. Nobre, S. Lanfredi, Cit. J. Appl. Phys. 93, 5576 (2003)

    CAS  Google Scholar 

  49. S. Thakur, R. Rai, I. Bdikin, M.A. Valente, Mater. Res. 19, 1 (2016)

    CAS  Google Scholar 

  50. K.P. Padmasree, D.K. Kanchan, A.R. Kulkarni, Solid State Ionics 177, 475 (2006)

    CAS  Google Scholar 

  51. M.K. Shamim, S. Sharma, S. Sinha, E. Nasreen, J. Adv. Dielectr. 7, 1750020 (2017)

    CAS  Google Scholar 

  52. P.R. Das, S. Behera, R. Padhee, P. Nayak, R.N.P. Choudhary, J. Adv. Ceram. 1, 232 (2012)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of DRDO (Government of India) [Project No. ERIP/ER/1406037/M/01/1558. We would like to thank Prof. Santosh Kumar Sahoo of department of Metallurgy and Materials Engineering [NIT Rourkela, Odisha, 769008] for measurement at X-ray Diffraction.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by BS, PK, and DN. The first draft of the manuscript was written by BS and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to P. Kumar.

Ethics declarations

Conflict of interest

Authors confirm that there is no conflict of interest regarding submission of research paper titled “Effect of Al substitution and secondary CuO phase on dielectric response in microwave-processed CaCu3Ti4−xAlxO12 ceramics” authored by Buddhadev Samanta, P. Kumar, and Dipika Nanda to your esteemed journal for consideration of publication. Previously, this article has not been published elsewhere and presently not under consideration elsewhere. If accepted, the article will not be published elsewhere in the same form, in any language, without the written consent of the publisher.

Ethical approval

Authors certify that the manuscript is submitted keeping compliance with ethical standards of Journal of Materials Science: Materials in Electronics.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samanta, B., Kumar, P. & Nanda, D. Effect of Al substitution and secondary CuO phase on dielectric response in microwave-processed CaCu3Ti4−xAlxO12 ceramics. J Mater Sci: Mater Electron 33, 1425–1440 (2022). https://doi.org/10.1007/s10854-021-07596-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07596-6

Navigation