Skip to main content
Log in

Field emission properties and ferromagnetic exchange interactions in γ-Fe2O3 and Fe3O4 nanoneedles—oleic acid-assisted growth

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In various biomedical applications of iron oxide nanostructures, superparamagnetic nanoneedles offer benefits to access the interior of cells without damage. However, use of superparamagnetic nanoneedles should not be limited to biomedical applications. To explore and extend the field of application, this study is focused on detailed investigation of structural, magnetic, and field emission behavior of iron oxide. Iron oxide nanoneedles are prepared using template-free oleic acid-assisted sol–gel method by varying sols’ molarity in the range 0.2–2.0 mM (interval 0.2 mM). Formation of nanoneedles with fine tips and diameter of 20, 23, and 25 nm and length of 700 nm, 1.0 μm, and 1.2 μm at 0.2, 1.0, and 2.0 mM sols are confirmed using Scanning Electron Microscopy. While for rest of the molarity range studied diameter of nanoneedles increases to ~ 50 nm. At 0.2 mM sol magnetite (Fe3O4) phase is observed and vacancy ordered and disordered maghemite (γ-Fe2O3) phases are observed at 0.8–1.0 and 1.4–2.0 mM sols, respectively. Formation of these phases of iron oxide with variation in sols’ molarity is also confirmed using FTIR spectra and Raman spectroscopy. Iron oxide nanoneedles show soft magnetic behavior with high saturation magnetization of 73.2, 43.43, and 75.18 emu/g at 0.2, 1.0, and 2.0 mM sols, respectively. These magnetic nanoneedles have potential applications in cell probing. Furthermore, nanoneedles are also tested for their field emission properties. It is observed that nanoneedles, with disordered maghemite phase, synthesized using 2.0 mM sol have high field emission properties along with low turn-on field of 3.77 Vμm−1. Thus, this study reveals ordered and disordered phases of iron oxide using single route. Furthermore, these phases can be utilized for different applications, such as Fe3O4 (at 0.2 mM) phase for biomedical applications and γ-Fe2O3 phase as field emitters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All the relevant data have been included in the manuscript.

References

  1. R.R. Kumar, K.U. Kumar, D. Haranath, Synthesis, properties, and applications of transition metal oxide nanomaterials in multifunctional nanostructured metal oxides for energy harvesting and storage devices (CRC Press, Boca Raton, 2020), pp. 1–73

    Google Scholar 

  2. H.L. Fan, S.F. Zhou, G.S. Qi, Y.Z. Liu, Continuous preparation of Fe3O4 nanoparticles using impinging stream-rotating packed bed reactor and magnetic property thereof. J. Alloy. Compd. 662, 497–504 (2016)

    CAS  Google Scholar 

  3. P.I.P. Soares, F. Lochte, C.E. Echeverria, L.C.J. Pereira, J.T. Coutinho, I.M.M. Ferreira, C.M.M. Novo, J.P.M.R. Borges, Thermal and magnetic properties of iron oxide colloids: Influence of surfactants. Nanotechnology 26, 425704 (2015)

    Google Scholar 

  4. E. Fazio, M. Santoro, G. Lentini, D. Franco, S.P.P. Guglielmino, F. Neri, Iron oxide nanoparticles prepared by laser ablation: synthesis, structural properties and antimicrobial activity. Colloid Surf. A 490, 98–103 (2016)

    CAS  Google Scholar 

  5. D. Ling, N. Lee, T. Hyeon, Chemical synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications. Acc. Chem. Res. 48, 1276–1285 (2015)

    CAS  Google Scholar 

  6. S. Riaz, A. Akbar, S. Naseem, Controlled nanostructuring of multiphase core-shell iron oxide nanoparticles. IEEE Trans. Magn. 50, 2300204 (2014)

    Google Scholar 

  7. L.K. Joy, V. Sooraj, U.S. Sajeev, S.S. Nair, T.N. Narayanan, N. Sethulakshmi, P.M. Ajayan, M.R. Anantharaman, Large enhanced dielectric permittivity in polyaniline passivated core-shell nano magnetic iron oxide by plasma polymerization. Appl. Phys. Lett. 104, 121603 (2014)

    Google Scholar 

  8. M. Jiao, J. Zeng, L. Jing, C. Liu, M. Gao, Flow synthesis of biocompatible Fe3O4 nanoparticles: insight into the effects of residence time, fluid velocity, and tube reactor dimension on particle size distribution. Chem. Mater. 27, 1299–1305 (2015)

    CAS  Google Scholar 

  9. L.G. Moragas, S.M. Yu, N.M. Cremaes, A. Laromaine, A. Roig, Scale-up synthesis of iron oxide nanoparticles by microwave-assisted thermal decomposition. Chem. Eng. J. 281, 87–95 (2015)

    Google Scholar 

  10. G. Kandasamy, D. Maity, Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics. Int. J. Pharm. 496, 191–218 (2015)

    CAS  Google Scholar 

  11. X. Shi, B. Chu, F. Wang, X. Wei, L. Teng, M. Fan, B. Li, L. Dong, L. Dong, Mn-modified CuO, CuFe2O4, and γ-Fe2O3 three-phase strong synergistic coexistence catalyst system for NO reduction by CO with a wider active window. ACS Appl. Mater. Interfaces 10, 40509–40522 (2018)

    CAS  Google Scholar 

  12. R.G. Crespo, A.Y. Al-Baitai, I. Saadoune, N.H. De Leeuw, Vacancy ordering and electronic structure of γ-Fe2O3 (maghemite): a theoretical investigation. J. Phys. 22, 255401 (2010)

    Google Scholar 

  13. A. Akbar, H. Yousaf, S. Riaz, S. Naseem, Role of precursor to solvent ratio in tuning the magnetization of iron oxide thin films–A sol-gel approach. J. Magn. Magn. Mater. 471, 14–24 (2019)

    CAS  Google Scholar 

  14. S. Babay, T. Mhiri, M. Toumi, Synthesis, structural and spectroscopic characterizations of maghemite γ-Fe2O3 prepared by one-step coprecipitation route. J. Mol. Struct. 1085, 286–293 (2015)

    CAS  Google Scholar 

  15. M. Mozaffari, S. Shatooti, M. Jafarzadeh, M. Niyaifar, A. Aftabi, H. Mohammadpour, S. Amiri, Synthesis of Zn2+ substituted maghemite nanoparticles and investigation of their structural and magnetic properties. J. Magn. Magn. Mater. 382, 366–375 (2015)

    CAS  Google Scholar 

  16. J. Ribis, Y. de Carlan, Interfacial strained structure and orientation relationships of the nanosized oxide particles deduced from elasticity-driven morphology in oxide dispersion strengthened materials. Acta Mater. 60, 238252 (2012)

    Google Scholar 

  17. R. Haul, T. Schoon, The structure of the ferromagnetic Iron (III) oxide γ-Fe2O3. Z. Phys. Chem. 44, 216–226 (1939)

    Google Scholar 

  18. P.B. Braun, A super structure in spinels. Nature 170, 1123 (1952)

    CAS  Google Scholar 

  19. G.W. Oosterhout, C.J.M. Rooijmans, A new superstructure in gamma-ferroic oxide. Nature 181, 44 (1958)

    Google Scholar 

  20. C. Greaves, A powder neutron diffraction investigation of vacancy ordering and covalence in γ-Fe2O3. J. Solid State Chem. 49, 325 (1983)

    CAS  Google Scholar 

  21. T.J. Bastow, A. Trinchi, M.R. Hill, R. Harris, T.H. Muster, Vacancy ordering in γ-Fe2O3 nanocrystals observed by 57FeNMR. J. Magn. Magn. Mater. 321, 2677–2681 (2009)

    CAS  Google Scholar 

  22. Z. Somogyvari, E. Svab, G. Meszaros, K. Krezhov, I. Nedkov, I. Sajo, F. Bouree, Vacancy ordering in nanosized maghemite fromneutron and X-ray powder diffraction. Appl. Phys. A 74, S1077–S1079 (2002)

    CAS  Google Scholar 

  23. H. Chen, Y. Zeng, W. Liu, S. Zhao, J. Wu, Y. Du, Multifaceted applications of nanomaterials in cell engineering and therapy. Biotechnol. Adv. 31, 638–653 (2013)

    CAS  Google Scholar 

  24. K. Yum, N. Wang, M.F. Yu, Nanoneedle: a multifunctional tool for biological studies in living cells. Nanoscale 2, 363–372 (2010)

    CAS  Google Scholar 

  25. J.G. Lu, P. Chang, Z. Fan, Quasi-one-dimensional metal oxide materials—synthesis, properties and applications. Mater. Sci. Eng. R 52, 49–91 (2006)

    Google Scholar 

  26. T. An, W.S. Choi, E. Lee, I. Kim, W. Moon, G. Lim, Fabrication of functional micro- and nanoneedles electrodes using a carbon nanotube template and electrodeposition. Nanoscale Res. Lett. 6, 306 (2011)

    Google Scholar 

  27. X. Sun, W. Liu, D. Ouyang, Synthesis of iron oxide nanoneedles and their field emission properties. J. Alloy Compd. 478, 38–40 (2009)

    CAS  Google Scholar 

  28. D.T. Mackay, M.T. Janish, U. Sahaym, P.G. Kotula, K.L. Jungjohann, C.B. Carter, M.G. Norton, Template-free electrochemical synthesis of tin nanostructures. J. Mater. Sci. 49, 1476–1483 (2014)

    CAS  Google Scholar 

  29. M. Mahdavi, M.B. Ahmad, M.J. Haron, F. Namvar, B. Nadi, M.Z.A. Rahman, J. Amin, Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications. Molecules 18, 7533–7548 (2013)

    CAS  Google Scholar 

  30. Y. Ge, C. Li, G.I. Waterhouse, X. Jiang, Z. Zhang, L. Yu, Polypyrrole/γ-Fe2O3/g-C3N4 nanocomposites for high-performance electromagnetic wave absorption. Synth. Metals 274, 116716 (2021)

    CAS  Google Scholar 

  31. S. Li, T. Zhang, R. Tang, H. Qiu, C. Wang, Z. Zhou, Solvothermal synthesis and characterization of monodisperse superparamagnetic iron oxide nanoparticles. J. Magn. Magn. Mater. 379, 226–231 (2015)

    CAS  Google Scholar 

  32. L. Zhang, R. He, H.C. Gu, Oleic acid coating on the monodisperse magnetite nanoparticles. Appl. Surf. Sci. 253, 2611–2617 (2006)

    CAS  Google Scholar 

  33. D.K. Kim, Y. Zhang, W. Voit, K.V. Rao, M. Muhammed, Synthesis and characterization of surfactant-coated superparamagnetic monodispersed iron oxide nanoparticles. J. Magn. Magn. Mater. 225, 30–36 (2001)

    CAS  Google Scholar 

  34. S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L.V. Elst, R.N. Muller, Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 108, 2064–2110 (2008)

    CAS  Google Scholar 

  35. S. Riaz, S. Rehman, M. Abutalib, S. Naseem, Structural, optical, and dielectric properties of aluminum oxide nanofibers synthesized by a lower-temperature sol-gel approach. J. Electron. Mater. (2016). https://doi.org/10.1007/s11664-016-4754-4

    Article  Google Scholar 

  36. S. Xuan, Y. Xiang, J. Wang, J.C. Yu, K.C.F. Leung, Tuning the grain size and particle size of superparamagnetic Fe3O4 microparticles. Chem. Mater. 21, 5079–5087 (2009)

    CAS  Google Scholar 

  37. I. Pribosic, D. Makovec, M. Drofenik, Formation of nanoneedles and nanoplatelets of KNbO3 perovskite during templated crystallization of the precursor gel. Chem. Mater. 17, 2953–2958 (2005)

    CAS  Google Scholar 

  38. C. Li, R. Wei, Y. Xu, A. Sun, L. Wei, Synthesis of hexagonal and triangular Fe3O4 nanosheets via seed-mediated solvothermal growth. Nano Res. 7, 536–543 (2014)

    CAS  Google Scholar 

  39. W. Wu, X. Xiao, S. Zhang, J. Zhou, L. Fan, F. Ren, C. Jiang, Large-Scale and controlled synthesis of iron oxide magnetic short nanotubes: shape evolution, growth mechanism, and magnetic properties. J. Phys. Chem. C 114, 16092–16103 (2010)

    CAS  Google Scholar 

  40. F. Jiao, J.C. Jumas, M. Womes, A.V. Chadwick, A. Harrison, P.G. Bruce, Synthesis of ordered mesoporous Fe3O4 and γ-Fe2O3 with crystalline walls using post-template reduction/oxidation. J. Am. Chem. Soc. 128, 12905–12909 (2006)

    CAS  Google Scholar 

  41. M.P. Morales, S.V. Verdaguer, M.I. Montero, C.J. Serna, Surface and internal spin canting in γ-Fe2O3 nanoparticles. Chem. Mater. 11, 3058–3064 (1999)

    CAS  Google Scholar 

  42. J. Tang, M. Myers, K.A. Bosnick, L.E. Brus, Magnetite Fe3O4 nanocrystals: spectroscopic observation of aqueous oxidation kinetics. J. Phys. Chem. B 107, 7501–7506 (2003)

    CAS  Google Scholar 

  43. S. Riaz, R. Ashraf, A. Akbar, S. Naseem, Free growth of iron oxide nanostructures by sol-gel spin coating technique—structural and magnetic properties. IEEE Trans. Magn. 50, 2301805 (2014)

    Google Scholar 

  44. A.G. Roca, M.P. Morales, C.J. Serna, Synthesis of monodispersed magnetite particles from different organometallic precursors. IEEE Trans. Magn. 40, 3025 (2006)

    Google Scholar 

  45. B.D. Cullity, Elements of X-ray Diffraction (Addison-Wesley Publishing Company, Boston, 1956)

    Google Scholar 

  46. L. Xu, G. Zheng, J. Miao, F. Xian, Dependence of structural and optical properties of sol–gel derived ZnO thin films on sol concentration. Appl. Surf. Sci. 258, 7760–7765 (2012)

    CAS  Google Scholar 

  47. S. Benramache, A. Arif, O. Belahssen, A. Guettaf, Study on the correlation between crystallite size and optical gap energy of doped ZnO thin film. J. Nanostruct. Chem. 3, 1–6 (2013)

    Google Scholar 

  48. I.S. Smolkova, N.E. Kazantseva, H. Parmar, V. Babayan, P. Smolka, P. Saha, Correlation between coprecipitation reaction course and magneto-structural properties of iron oxide nanoparticles. Mater. Chem. Phys. 155, 178–190 (2015)

    CAS  Google Scholar 

  49. D.J. Craik, Magnetic Oxides (Wiley, Hoboken, 1975)

    Google Scholar 

  50. J.A. Cuenca, K. Bugler, S. Taylor, D. Morgan, P. Williams, J. Bauer, A. Porch, Study of the magnetite to maghemite transition using microwave permittivity and permeability measurements. J. Phys. 28, 106002 (2016)

    Google Scholar 

  51. T. Belin, N. Millot, F. Villieras, O. Bertrand, J.P. Bellat, Structural variations as a function of surface adsorption in nanostructured particles. J. Phys. Chem. B 108, 5333–5340 (2004)

    CAS  Google Scholar 

  52. T. Belin, N.G. Millot, T. Caillot, D. Aymes, J.C. Niepce, Influence of grain size, oxygen stoichiometry, and synthesis conditions on the γ-Fe2O3 vacancies ordering and lattice parameters. J. Solid State Chem. 163, 459–465 (2002)

    CAS  Google Scholar 

  53. T.J. Daou, J.M. Greneche, G. Pourroy, S. Buathong, A. Derory, C.U. Bouillet, B. Donnio, D. Guillon, S.B. Colin, Coupling agent effect on magnetic properties of functionalized magnetite-based nanoparticles. Chem. Mater. 20, 5869–5875 (2008)

    CAS  Google Scholar 

  54. S.K. Sahoo, K. Agarwal, A.K. Singh, B.G. Polke, K.C. Raha, Characterization of γ- and α-Fe2O3 nano powders synthesized by emulsion precipitation-calcination route and rheological behaviour of α-Fe2O3. Int. J. Eng. Sci. Technol. 2, 118–126 (2010)

    Google Scholar 

  55. M. Raileanu, L. Todan, D. Crisan, N. Dragan, M. Crisan, C. Stan, C. Andronescu, M. Voicescu, B.S. Vasile, A. Ianculescu, Sol–gel zirconia nanopowders with α-cyclodextrin as organic additive. J. Alloy Compd. 517, 157–163 (2012)

    CAS  Google Scholar 

  56. L.V. Gasparov, D.B. Tanner, Infrared and Raman studies of the Verwey transition in magnetite. Phys. Rev. B. 62, 7939–7944 (2000)

    CAS  Google Scholar 

  57. I. Chamritski, G. Burns, Infrared- and Raman-active phonons of magnetite, maghemite, and hematite: a computer simulation and spectroscopic study. J. Phys. Chem. B 109, 4965–4968 (2005)

    CAS  Google Scholar 

  58. M.B. Yazdi, K.Y. Choi, D. Wulferding, P. Lemmens, L. Alff, Raman study of the Verwey transition in magnetite thin films. New J. Phys. 15, 103032 (2013)

    Google Scholar 

  59. A.M. Jubb, H.C. Allen, Vibrational spectroscopic characterization of hematite, maghemite, and magnetite thin films produced by vapor deposition. Appl. Mater. Interface 2, 2804–2812 (2010)

    CAS  Google Scholar 

  60. K. Ali, A.K. Sarfraz, I.M. Mirza, A. Bahadur, S. Iqbal, A. Haq, Preparation of superparamagnetic maghemite (γ-Fe2O3) nanoparticles by wet chemical route and investigation of their magnetic and dielectric properties. Curr. Appl. Phys. 15, 925–929 (2015)

    Google Scholar 

  61. P.B. Shete, R.M. Patil, B.M. Tiwale, S.H. Pawar, Water dispersible oleic acid-coated Fe3O4 nanoparticles for biomedical applications. J. Magn. Magn. Mater. 377, 406–410 (2015)

    CAS  Google Scholar 

  62. K. Kluchova, R. Zboril, J. Tucek, M. Pecova, L. Zajoncova, I. Safarik, M. Mashlan, I. Markova, D. Jancik, M. Sebela, H. Bartonkova, V. Bellesi, P. Novak, D. Petridis, Superparamagnetic maghemite nanoparticles from solid-state synthesis—their functionalization towards peroral MRI contrast agent and magnetic carrier for trypsin immobilization. Biomaterials 30, 2855–2863 (2009)

    CAS  Google Scholar 

  63. J. Lu, X. Jiao, D. Chen, W. Li, Solvothermal synthesis and characterization of Fe3O4 and γ-Fe2O3 nanoplates. J. Phys. Chem. C 113, 4012–4017 (2009)

    CAS  Google Scholar 

  64. R.H. Fowler, L. Nordheim, Electron emission in intense electric fields. Proc. R. Soc. Lond. 119, 173–181 (1928)

    CAS  Google Scholar 

  65. E.L. Murphy, R.H. Good Jr., Thermionic emission, field emission, and the transition region. Phys. Rev. 102(6), 1464 (1956)

    CAS  Google Scholar 

  66. D. Banerjee, A. Jha, K.K. Chattopadhyay, Low-temperature synthesis of amorphous carbon nanoneedle and study on its field emission property. Phys. E 41, 1174–1178 (2009)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

ZHS contributed to synthesis and preparation of the initial draft. AA contributed to synthesis and structural data analysis. SR performed research design and overall supervision. SSH performed magnetic analysis. RS contributed to XRD results. ZNK contributed to FTIR and electronic results. SN performed overall supervision and preparation of the final draft.

Corresponding author

Correspondence to Shahzad Naseem.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, Z.H., Awan, A., Riaz, S. et al. Field emission properties and ferromagnetic exchange interactions in γ-Fe2O3 and Fe3O4 nanoneedles—oleic acid-assisted growth. J Mater Sci: Mater Electron 33, 4025–4042 (2022). https://doi.org/10.1007/s10854-021-07594-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07594-8

Navigation