Skip to main content

Advertisement

Log in

Fabrication of self-healing hybrid nanogenerators based on polyurethane and ZnO for harvesting wind energy

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Energy is the most dependable need of the current era. With the tendency in portable electronics and self-powered systems, researchers have been developing nanogenerators and utilizing them as self-powered energy source. High output and optimum efficiency are always a key concern. Hence, in this research work, a hybrid NG based on both piezoelectric and triboelectric phenomena is proposed and utilized for harvesting wind energy. The UV curable polyurethane (PU) and a composite of zinc oxide (ZnO) in powder form with UV curable PU (ZnO + PU) are utilized for fabricating the triboelectric NG (TENG) and Piezoelectric NG (PNG), respectively. To combine the effect of both PNG and TENG, these two nanogenerators are stacked using a sponge as a spacer by providing a uniform air gap for triboelectrification. The hybrid nanogenerator module was connected in parallel to collect the electrical energy harvested. The fabricated hybrid nanogenerators effectively produced an open-circuit voltage of ~ 120 V and current density of ~ 140 µA cm−2 across 50 Ω resistor during fast speed wind from a stand fan. Apart from that, the developed hybrid NG can light up to 50 commercial LEDs, implying that the proposed hybrid NG can be used as a self-powered energy source in portable electronics, wireless and monitoring systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. X. Pu, L. Li, H. Song, C. Du, Z. Zhao, C. Jiang, G. Cao, W. Hu, Z.L. Wang, A Self-charging power unit by integration of a textile triboelectric nanogenerator and a flexible lithium-ion battery for wearable electronics. Adv. Mater. 27(15), 2472–2478 (2015). https://doi.org/10.1002/adma.201500311

    Article  CAS  Google Scholar 

  2. X. Wang, J. Song, J. Liu, Z.L. Wang, Direct-Current Nanogenerator Driven by Ultrasonic Waves. Science (80-) 316(5821), 102–105 (2007).

  3. B. Kang, G. Ceder, Battery materials for ultrafast charging and discharging. Nature 458(7235), 190–193 (2009). https://doi.org/10.1038/nature07853

    Article  CAS  Google Scholar 

  4. C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, Y. Cui, High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3(1), 31–35 (2008). https://doi.org/10.1038/nnano.2007.411

    Article  CAS  Google Scholar 

  5. F.R. Fan, Z.Q. Tian, Z.L. Wang, Flexible triboelectric generator. Nano Energy 1(2), 328–334 (2012). https://doi.org/10.1016/j.nanoen.2012.01.004

    Article  CAS  Google Scholar 

  6. B. Yang, C. Lee, R.K. Kotlanka, J. Xie, S.P. Lim, A MEMS rotary comb mechanism for harvesting the kinetic energy of planar vibrations. J. Micromech. Microeng. 20(6), 65017 (2010). https://doi.org/10.1088/0960-1317/20/6/065017

    Article  CAS  Google Scholar 

  7. H. Liu, C.J. Tay, C. Quan, T. Kobayashi, C. Lee, Piezoelectric MEMS energy harvester for low-frequency vibrations with wideband operation range and steadily increased output power. J. Microelectromech. Syst. 20(5), 1131–1142 (2011). https://doi.org/10.1109/JMEMS.2011.2162488

    Article  CAS  Google Scholar 

  8. C. Chang, V.H. Tran, J. Wang, Y.K. Fuh, L. Lin, Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett. 10(2), 726–731 (2010). https://doi.org/10.1021/nl9040719

    Article  CAS  Google Scholar 

  9. A. Tamang, S.K. Ghosh, S. Garain, M.M. Alam, J. Haeberle, K. Henkel, D. Schmeisser, D. Mandal, DNA-assisted β-phase nucleation and alignment of molecular dipoles in PVDF film: a realization of self-poled bioinspired flexible polymer nanogenerator for portable electronic devices. ACS Appl. Mater. Interfaces 7(30), 16143–16147 (2015). https://doi.org/10.1021/acsami.5b04161

    Article  CAS  Google Scholar 

  10. S. Chandrasekaran, C. Bowen, J. Roscow, Y. Zhang, D.K. Dang, E.J. Kim, R.D.K. Misra, L. Deng, J.S. Chung, S.H. Hur, Micro-scale to nano-scale generators for energy harvesting: self powered piezoelectric, triboelectric and hybrid devices. Phys. Rep. 792, 1–33 (2019). https://doi.org/10.1016/j.physrep.2018.11.001

    Article  CAS  Google Scholar 

  11. A. Nechibvute, A. Chawanda, P. Luhanga, Piezoelectric energy harvesting devices: an alternative energy source for wireless sensors. Smart Mater. Res. 2012, 853481 (2012). https://doi.org/10.1155/2012/853481

    Article  Google Scholar 

  12. C. Wu, A.C. Wang, W. Ding, H. Guo, Z.L. Wang, Triboelectric nanogenerator: a foundation of the energy for the new era. Adv. Energy Mater. 9(1), 1–25 (2019). https://doi.org/10.1002/aenm.201802906

    Article  CAS  Google Scholar 

  13. W. Yang, J. Chen, Q. Jing, J. Yang, X. Wen, Y. Su, G. Zhu, P. Bai, Z.L. Wang, 3D stack integrated triboelectric nanogenerator for harvesting vibration energy. Adv. Funct. Mater. 24(26), 4090–4096 (2014). https://doi.org/10.1002/adfm.201304211

    Article  CAS  Google Scholar 

  14. B. Zhang, J. Chen, L. Jin, W. Deng, L. Zhang, H. Zhang, M. Zhu, W. Yang, Z.L. Wang, Rotating-disk-based hybridized electromagnetic-triboelectric nanogenerator for sustainably powering wireless traffic volume sensors. ACS Nano 10(6), 6241–6247 (2016). https://doi.org/10.1021/acsnano.6b02384

    Article  CAS  Google Scholar 

  15. M. Han, X.S. Zhang, B. Meng, W. Liu, W. Tang, X. Sun, W. Wang, H. Zhang, r-shaped hybrid nanogenerator with enhanced piezoelectricity. ACS Nano 7(10), 8554–8560 (2013). https://doi.org/10.1021/nn404023v

    Article  CAS  Google Scholar 

  16. W.S. Jung, M.G. Kang, H.G. Moon, S.H. Baek, S.J. Yoon, Z.L. Wang, S.W. Kim, C.Y. Kang, High output piezo/triboelectric hybrid generator. Sci. Rep. 5(1), 9309 (2015). https://doi.org/10.1038/srep09309

    Article  CAS  Google Scholar 

  17. Y. Qin, X. Wang, Z.L. Wang, Microfibre–nanowire hybrid structure for energy scavenging. Nature 451(7180), 809–813 (2008). https://doi.org/10.1038/nature06601

    Article  CAS  Google Scholar 

  18. X. Wang, B. Yang, J. Liu, Y. Zhu, C. Yang, Q. He, A flexible triboelectric-piezoelectric hybrid nanogenerator based on P(VDF-TrFE) nanofibers and PDMS/MWCNT for wearable devices. Sci. Rep. 6(1), 36409 (2016). https://doi.org/10.1038/srep36409

    Article  CAS  Google Scholar 

  19. D. Mao, B.E. Gnade, M.A. Quevedo-Lopez, Ferroelectric Properties and Polarization Switching Kinetic of Poly (Vinylidene Fluoride-Trifluoroethylene) Copolymer, Ch. 4. IntechOpen (2011).

  20. M. Li, Y. Jie, L.H. Shao, Y. Guo, X. Cao, N. Wang, Z.L. Wang, All-in-one cellulose based hybrid tribo/piezoelectric nanogenerator. Nano Res. 12(8), 1831–1835 (2019). https://doi.org/10.1007/s12274-019-2443-3

    Article  CAS  Google Scholar 

  21. G. Hassan, F. Khan, A. Hassan, S. Ali, J. Bae, C.H. Lee, A flat-panel-shaped hybrid piezo/triboelectric nanogenerator for ambient energy harvesting. Nanotechnology 28(17), 175402 (2017). https://doi.org/10.1088/1361-6528/aa65c3

    Article  CAS  Google Scholar 

  22. L. Han, X. Lu, M. Wang, D. Gan, W. Deng, K. Wang, L. Fang, K. Liu, C.W. Chan, Y. Tang, L.T. Weng, A mussel-inspired conductive, self-adhesive, and self-healable tough hydrogel as cell stimulators and implantable bioelectronics. Small 13(2), 1601916 (2017). https://doi.org/10.1002/smll.201601916

    Article  CAS  Google Scholar 

  23. G. Cai, J. Wang, K. Qian, J. Chen, S. Li, P.S. Lee, Extremely stretchable strain sensors based on conductive self-healing dynamic cross-links hydrogels for human-motion detection. Adv. Sci. 4(2), 1600190 (2017). https://doi.org/10.1002/advs.201600190

    Article  CAS  Google Scholar 

  24. Y. Zhang T. Nayak, H. Hong, W. Cai, Biomedical applications of zinc oxide nanomaterials. Curr. Mol. Med. 13(10), 1633–1645 (2013). https://doi.org/10.2174/1566524013666131111130058.

  25. M. Willander, O. Nur, Q.X. Zhao, L.L. Yang, M. Lorenz, B.Q. Cao, J.Z. Pérez, C. Czekalla, G. Zimmermann, M. Grundmann, A. Bakin, Zinc oxide nanorod based photonic devices: Recent progress in growth, lightemitting diodes and lasers. Nanotechnology 20(33) (2009). https://doi.org/10.1088/0957-4484/20/33/332001.

  26. T. Kamilya, P.K. Sarkar, S. Acharya, Unveiling peritoneum membrane for a robust triboelectric nanogenerator. ACS Omega 4(18), 17684–17690 (2019). https://doi.org/10.1021/acsomega.9b01963

    Article  CAS  Google Scholar 

  27. S. Niu, S. Wang, L. Lin, Y. Liu, Y.S. Zhou, Y. Hu, Z.L. Wang, Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy Environ. Sci. 6(12), 3576–3583 (2013). https://doi.org/10.1039/c3ee42571a

    Article  Google Scholar 

  28. S. Niu, Y. Liu, S. Wang, L. Lin, Y.S. Zhou, Y. Hu, Z.L. Wang, Theoretical investigation and structural optimization of single-electrode triboelectric nanogenerators. Adv. Funct. Mater. 24(22), 3332–3340 (2014). https://doi.org/10.1002/adfm.201303799

    Article  CAS  Google Scholar 

  29. Z.L. Wang, J. Chen, L. Lin, Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 8(8), 2250–2282 (2015). https://doi.org/10.1039/c5ee01532d

    Article  CAS  Google Scholar 

  30. L.D. Agnol, F.T.G. Dias, H.L. Ornaghi Jr., M. Sangermano, O. Bianchi, UV-curable waterborne polyurethane coatings: a state-of-the-art and recent advances review. Prog. Org. Coat. 154, 106156 (2021). https://doi.org/10.1016/j.porgcoat.2021.106156

    Article  CAS  Google Scholar 

  31. J. Fu, L. Wang, H. Yu, M. Haroon, F. Haq, W. Shi, B. Wu, L. Wang, Research progress of UV-curable polyurethane acrylate-based hardening coatings. Prog. Org. Coat. 131, 82–99 (2019). https://doi.org/10.1016/j.porgcoat.2019.01.061

    Article  CAS  Google Scholar 

  32. S.A. Guelcher, Biodegradable polyurethanes: synthesis and applications in regenerative medicine. Tissue Eng. B Rev. 14(1), 3–17 (2008). https://doi.org/10.1089/teb.2007.0133

    Article  CAS  Google Scholar 

  33. X. Zhang, K.G. Battiston, J.E. McBane, L.A. Matheson, R.S. Labow, J.P. Santerre, Design of biodegradable polyurethanes and the interactions of the polymers and their degradation by-products within in vitro and in vivo environments. Adv. Polyurethane Biomater. 75–114 (2016).

  34. Z.L. Wang, ZnO nanowire and nanobelt platform for nanotechnology. Mater. Sci. Eng. R 64(3–4), 33–71 (2009). https://doi.org/10.1016/j.mser.2009.02.001

    Article  CAS  Google Scholar 

  35. C.L. Hsu, K.C. Chen, Improving piezoelectric nanogenerator comprises ZnO nanowires by bending the flexible PET substrate at low vibration frequency. J. Phys. Chem. C 116(16), 9351–9355 (2012). https://doi.org/10.1021/jp301527y

    Article  CAS  Google Scholar 

  36. A. Khan, M. Hussain, M.A. Abbasi, Z.H. Ibupoto, O. Nur, M. Willander, Analysis of junction properties of gold-zinc oxide nanorods-based Schottky diode by means of frequency dependent electrical characterization on textile. J. Mater. Sci. 49(9), 3434–3441 (2014). https://doi.org/10.1007/s10853-014-8053-2

    Article  CAS  Google Scholar 

  37. S. Niu, Y.S. Zhou, S. Wang, Y. Liu, L. Lin, Y. Bando, Z.L. Wang, Simulation method for optimizing the performance of an integrated triboelectric nanogenerator energy harvesting system. Nano Energy 8, 150–156 (2014). https://doi.org/10.1016/j.nanoen.2014.05.018

    Article  CAS  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gul Hassan or Ahmed Shuja.

Ethics declarations

Conflict of interest

All the authors contributed to this research work have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, I., Hassan, G. & Shuja, A. Fabrication of self-healing hybrid nanogenerators based on polyurethane and ZnO for harvesting wind energy. J Mater Sci: Mater Electron 33, 3982–3993 (2022). https://doi.org/10.1007/s10854-021-07591-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07591-x

Navigation