Skip to main content
Log in

Ultra-sensitive all organic PVDF-TrFE E-spun nanofibers with enhanced β-phase for piezoelectric response

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The use of piezoelectric materials has been increased due to the growing demand for wearable devices. Herein, we report the development of new copolymer poly (vinylidene fluoride-co-trifluoroethylene) (PVDF-TrFE)-based reduced graphene oxide (rGO) and multiwalled carbon nanotubes (MCNTs) loaded electrospun (E-Spun) nanofibers. The rGO-MCNTs loaded PVDF-TrFE nanofibrous mat led to the fabrication of ultra-sensitive piezoelectric pressure sensors for potential wearable health monitoring applications. The doped PVDF-TrFE solution of different weight percentages of rGO-MCNTs as fillers was prepared and used to fabricate an e-spun nanofibrous mat. Complete characterization of resultant materials were carried through diverse instruments which reveals the successful integration of rGO-MCNTs (3.2%) as a dopant that improved the β-phase up to 92%. The DSC analysis further exposes the high thermal stability of the PVDF-TrFE nanofibers mat due to the enhanced crystallinity with the addition of nanofillers. The newly developed sensor’s overall output (based on sensitivity) was calculated under a variable applied pressure range of 0.25 ~ 300 cN at 50 HZ. Results show that the pressure sensor response has improved from 16.125 ~ 0.430 kPa−1, corresponding to a higher sensitivity under static and dynamic forces in the applied pressure range. These results are of a fundamental study and open new prospects for the hybrid nanofibrous mat as alternative electrode material in the piezoelectric pressure sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the article (and its supplementary information files).

References

  1. S. Siddiqui et al., An omnidirectionally stretchable piezoelectric nanogenerator based on hybrid nanofibers and carbon electrodes for multimodal straining and human kinematics energy harvesting. Adv. Energy Mater. 9(11), 1900093 (2019)

    Google Scholar 

  2. S. Siddiqui et al., An omnidirectionally stretchable piezoelectric nanogenerator based on hybrid nanofibers and carbon electrodes for multimodal straining and human kinematics energy harvesting. Adv. Energy Mater. 8(2), 1701520 (2018)

    Google Scholar 

  3. S. Siddiqui et al., A durable and stable piezoelectric nanogenerator with nanocomposite nanofibers embedded in an elastomer under high loading for a self-powered sensor system. Nano Energy 30, 434–442 (2016)

    CAS  Google Scholar 

  4. Y. Yang et al., Flexible piezoelectric pressure sensor based on polydopamine-modified BaTiO3/PVDF composite film for human motion monitoring. Sens. Actuators A: Phys. 301, 111789 (2020)

    CAS  Google Scholar 

  5. X. Yuan et al., A 3D-printed, alternatively tilt-polarized PVDF-TrFE polymer with enhanced piezoelectric effect for self-powered sensor application. Nano Energy 85, 105985 (2021)

    CAS  Google Scholar 

  6. D. Carponcin et al., Electrical and piezoelectric behavior of polyamide/PZT/CNT multifunctional nanocomposites. Adv. Eng. Mater. 16(8), 1018–1025 (2014)

    CAS  Google Scholar 

  7. S. Mathur, J. Scheinbeim, B. Newman, Piezoelectric properties and ferroelectric hysteresis effects in uniaxially stretched nylon-11 films. J. Appl. Phys. 56(9), 2419–2425 (1984)

    CAS  Google Scholar 

  8. N. Shehata et al., Static-aligned piezoelectric poly (vinylidene fluoride) electrospun nanofibers/MWCNT composite membrane: facile method. Polymers 10(9), 965 (2018)

    Google Scholar 

  9. L. Huang et al., Synthesis of biodegradable and electroactive multiblock polylactide and aniline pentamer copolymer for tissue engineering applications. Biomacromolecules 9(3), 850–858 (2008)

    CAS  Google Scholar 

  10. D.J. Bryan et al., Enhanced peripheral nerve regeneration through a poled bioresorbable poly (lactic-co-glycolic acid) guidance channel. J. Neural Eng. 1(2), 91 (2004)

    Google Scholar 

  11. K. Shi et al., Interface induced performance enhancement in flexible BaTiO3/PVDF-TrFE based piezoelectric nanogenerators. Nano Energy 80, 105515 (2021)

    CAS  Google Scholar 

  12. A. Mahmud, Advanced nanoelectromechanical systems for next generation energy harvesting (University of Waterloo, Waterloo, 2018)

    Google Scholar 

  13. S. Wang et al., Boosting piezoelectric response of PVDF-TrFE via MXene for self-powered linear pressure sensor. Compos. Sci. Technol. 202, 108600 (2021)

    CAS  Google Scholar 

  14. Y. Zhmayev et al., Non-enthalpic enhancement of spatial distribution and orientation of CNTs and GNRs in polymer nanofibers. Polymer (2019). https://doi.org/10.1016/j.polymer.2019.121551

    Article  Google Scholar 

  15. A. Gebrekrstos, G. Madras, S. Bose, Piezoelectric response in electrospun poly (vinylidene fluoride) fibers containing fluoro-doped graphene derivatives. ACS Omega 3(5), 5317–5326 (2018)

    CAS  Google Scholar 

  16. R.A. Surmenev et al., A review on piezo-and pyroelectric responses of flexible nano-and micropatterned polymer surfaces for biomedical sensing and energy harvesting applications. Nano Energy 79, 105442 (2021)

    CAS  Google Scholar 

  17. Z. Liu et al., Superhydrophobic poly (vinylidene fluoride) membranes with controllable structure and tunable wettability prepared by one-step electrospinning. Polymer 82, 105–113 (2016)

    CAS  Google Scholar 

  18. X. Wang et al., Tactile-sensing based on flexible PVDF nanofibers via electrospinning: a review. Sensors 18(2), 330 (2018)

    CAS  Google Scholar 

  19. V. Dhand et al., Fabrication of robust, ultrathin and light weight, hydrophilic, PVDF-CNT membrane composite for salt rejection. Compos. B Eng. 160, 632–643 (2019)

    CAS  Google Scholar 

  20. K. Saha et al., Gold nanoparticles in chemical and biological sensing. Chem. Rev. 112(5), 2739–2779 (2012)

    CAS  Google Scholar 

  21. F.-A. He et al., Tough and porous piezoelectric P (VDF-TrFE)/organosilicate composite membrane. High Perform. Polym. 29(2), 133–140 (2017)

    CAS  Google Scholar 

  22. Z. Meng et al., Electrically-transduced chemical sensors based on two-dimensional nanomaterials. Chem. Rev. 119(1), 478–598 (2019)

    CAS  Google Scholar 

  23. O.S. Kwon et al., Conducting nanomaterial sensor using natural receptors. Chem. Rev. 119(1), 36–93 (2018)

    Google Scholar 

  24. M. Xie et al., Flexible multifunctional sensors for wearable and robotic applications. Adv. Mater. Technol. (2019). https://doi.org/10.1002/admt.201800626

    Article  Google Scholar 

  25. B. Krause et al., Comparative study of singlewalled, multiwalled, and branched carbon nanotubes melt mixed in different thermoplastic matrices. Polymer 159, 75–85 (2018)

    CAS  Google Scholar 

  26. D. Singh, A. Choudhary, A. Garg, Flexible and robust piezoelectric polymer nanocomposites based energy harvesters. ACS Appl. Mater. Interfaces. 10(3), 2793–2800 (2018)

    CAS  Google Scholar 

  27. A. Ahmed et al., Preparation of PVDF-TrFE based electrospun nanofibers decorated with PEDOT-CNT/rGO composites for piezo-electric pressure sensor. J. Mater. Sci.: Mater. Electron. 30(15), 14007–14021 (2019)

    CAS  Google Scholar 

  28. M.Z. Islam et al., Continuous dyeing of graphene on cotton fabric: binder-free approach for electromagnetic shielding. Appl. Surf. Sci. 496, 143636 (2019)

    Google Scholar 

  29. J.K.Y. Lee et al., Polymer-based composites by electrospinning: preparation & functionalization with nanocarbons. Prog. Polym. Sci. (2018). https://doi.org/10.1016/j.progpolymsci.2018.07.002

    Article  Google Scholar 

  30. Y. Kim et al., Characterization of PI/PVDF-TrFE composite nanofiber-based triboelectric nanogenerators depending on the type of the electrospinning system. ACS Appl. Mater. Interfaces (2021). https://doi.org/10.1021/acsami.1c04450

    Article  Google Scholar 

  31. S.M. Hosseini, A.A. Yousefi, Electrospun PVDF/MWCNT/OMMT hybrid nanocomposites: preparation and characterization. Iran. Polym. J. 26(5), 331–339 (2017)

    CAS  Google Scholar 

  32. Y. Jia et al., A review on electrospun magnetic nanomaterials: methods, properties and applications. J. Mater. Chem. C (2021). https://doi.org/10.1039/D1TC01477C

    Article  Google Scholar 

  33. M.M. Hasan et al., Functionalization of polypropylene nonwoven fabrics using cold plasma (O2) for developing graphene-based wearable sensors. Sens. Actuators A: Phys. 300, 1137 (2019)

    Google Scholar 

  34. K. De Silva et al., Chemical reduction of graphene oxide using green reductants. Carbon 119, 190–199 (2017)

    Google Scholar 

  35. S.-H. Wang et al., Mechanical and electrical properties of electrospun PVDF/MWCNT ultrafine fibers using rotating collector. Nanoscale Res. Lett. 9(1), 522 (2014)

    Google Scholar 

  36. H. Deb et al., Design and development of TiO 2-Fe 0 nanoparticle-immobilized nanofibrous mat for photocatalytic degradation of hazardous water pollutants. J. Mater. Sci.: Mater. Electron. 30(5), 4842–4854 (2019)

    CAS  Google Scholar 

  37. H. Deb et al., Immobilization of cationic titanium dioxide (TiO 2+) on electrospun nanofibrous mat: synthesis, characterization, and potential environmental application. Fibers Polym. 19(8), 1715–1725 (2018)

    CAS  Google Scholar 

  38. K. Shi et al., Synergistic effect of graphene nanosheet and BaTiO3 nanoparticles on performance enhancement of electrospun PVDF nanofiber mat for flexible piezoelectric nanogenerators. Nano Energy 52, 153–162 (2018)

    CAS  Google Scholar 

  39. S. Huang et al., Electrospinning of polyvinylidene difluoride with carbon nanotubes: synergistic effects of extensional force and interfacial interaction on crystalline structures. Langmuir 24(23), 13621–13626 (2008)

    CAS  Google Scholar 

  40. H. Ye et al., High dielectric constant and low loss in poly (fluorovinylidene-co-hexafluoropropylene) nanocomposite incorporated with liquid-exfoliated oriented graphene with assistance of hyperbranched polyethylene. Polymer 145, 391–401 (2018)

    CAS  Google Scholar 

  41. N. Maity, A. Mandal, A.K. Nandi, Synergistic interfacial effect of polymer stabilized graphene via non-covalent functionalization in poly (vinylidene fluoride) matrix yielding superior mechanical and electronic properties. Polymer 88, 79–93 (2016)

    CAS  Google Scholar 

  42. H. Xu et al., Immobilized graphene oxide nanosheets as thin but strong nanointerfaces in biocomposites. ACS Sustain. Chem. Eng. 4(4), 2211–2222 (2016)

    CAS  Google Scholar 

  43. Y. Ahn et al., Enhanced piezoelectric properties of electrospun poly (vinylidene fluoride)/multiwalled carbon nanotube composites due to high β-phase formation in poly (vinylidene fluoride). J. Phys. Chem. C 117(22), 11791–11799 (2013)

    CAS  Google Scholar 

  44. Y. Song et al., Preparation and characterization of highly aligned carbon nanotubes/polyacrylonitrile composite nanofibers. Polymers 9(1), 1 (2017)

    CAS  Google Scholar 

  45. J. Zhao, H. Liu, L. Xu, Preparation and formation mechanism of highly aligned electrospun nanofibers using a modified parallel electrode method. Mater. Des. 90, 1–6 (2016)

    CAS  Google Scholar 

  46. Z. Pi et al., Flexible piezoelectric nanogenerator made of poly (vinylidenefluoride-co-trifluoroethylene)(PVDF-TrFE) thin film. Nano Energy 7, 33–41 (2014)

    CAS  Google Scholar 

  47. B. Wang, H.-X. Huang, Incorporation of halloysite nanotubes into PVDF matrix: nucleation of electroactive phase accompany with significant reinforcement and dimensional stability improvement. Compos. A Appl. Sci. Manuf. 66, 16–24 (2014)

    CAS  Google Scholar 

  48. W. Ma et al., Effect of PMMA on crystallization behavior and hydrophilicity of poly (vinylidene fluoride)/poly (methyl methacrylate) blend prepared in semi-dilute solutions. Appl. Surf. Sci. 253(20), 8377–8388 (2007)

    CAS  Google Scholar 

  49. R. Sousa et al., Microstructural variations of poly (vinylidene fluoride co-hexafluoropropylene) and their influence on the thermal, dielectric and piezoelectric properties. Polym. Testing 40, 245–255 (2014)

    CAS  Google Scholar 

  50. M. Sharma, G. Madras, S. Bose, Contrasting effects of graphene oxide and poly (ethylenimine) on the polymorphism in poly (vinylidene fluoride). Cryst. Growth Des. 15(7), 3345–3355 (2015)

    CAS  Google Scholar 

  51. G. Suresh et al., Evolution of morphology, ferroelectric, and mechanical properties in poly (vinylidene fluoride)–poly (vinylidene fluoride-trifluoroethylene) blends. J. Appl. Polym. Sci. 135(10), 45955 (2018)

    Google Scholar 

  52. X. Hu et al., Highly sensitive P (VDF-TrFE)/BTO nanofiber-based pressure sensor with dense stress concentration microstructures. ACS Appl. Polym. Mater. 2(11), 4399–4404 (2020)

    CAS  Google Scholar 

  53. A. Ismail, M. Mohammed, S. Fouad, Optical and structural properties of polyvinylidene fluoride (PVDF)/reduced graphene oxide (RGO) nanocomposites. J. Mol. Struct. 1170, 51–59 (2018)

    CAS  Google Scholar 

  54. P. Han et al., Structure, thermal stability and electrical properties of reduced graphene/poly (vinylidene fluoride) nanocomposite films. J. Nanosci. Nanotechnol. 12(9), 7290–7295 (2012)

    CAS  Google Scholar 

  55. F. Shahzad, S.A. Zaidi, C.M. Koo, Synthesis of multifunctional electrically tunable fluorine-doped reduced graphene oxide at low temperatures. ACS Appl. Mater. Interfaces. 9(28), 24179–24189 (2017)

    CAS  Google Scholar 

  56. O. Jankovský et al., Water-soluble highly fluorinated graphite oxide. RSC Adv. 4(3), 1378–1387 (2014)

    Google Scholar 

  57. R. Chu et al., Reduced graphene oxide coated porous carbon–sulfur nanofiber as a flexible paper electrode for lithium–sulfur batteries. Nanoscale 9(26), 9129–9138 (2017)

    CAS  Google Scholar 

  58. Z. Wang et al., Synthesis of fluorinated graphene with tunable degree of fluorination. Carbon 50(15), 5403–5410 (2012)

    CAS  Google Scholar 

  59. F.S. Al-Hazmi et al., Synthesis and characterization of novel Cu2O/PVDF nanocomposites for flexible ferroelectric organic electronic memory devices. Curr. Appl. Phys. 17(9), 1181–1188 (2017)

    Google Scholar 

  60. P. Fakhri et al., Improved electroactive phase content and dielectric properties of flexible PVDF nanocomposite films filled with Au-and Cu-doped graphene oxide hybrid nanofiller. Synth. Met. 220, 653–660 (2016)

    CAS  Google Scholar 

  61. X. Hu et al., Wearable piezoelectric nanogenerators based on reduced graphene oxide and in situ polarization-enhanced PVDF-TrFE films. J. Mater. Sci. 54(8), 6401–6409 (2019)

    CAS  Google Scholar 

  62. A. Toprak, O. Tigli, MEMS scale PVDF-TrFE-based piezoelectric energy harvesters. J. Microelectromech. Syst. 24(6), 1989–1997 (2015)

    CAS  Google Scholar 

  63. M. Baniasadi et al., Correlation of annealing temperature, morphology, and electro-mechanical properties of electrospun piezoelectric nanofibers. Polymer 127, 192–202 (2017)

    CAS  Google Scholar 

  64. Y. Liu et al., 3D network structure and sensing performance of woven fabric as promising flexible strain sensor. SN Appl. Sci. 2(1), 70 (2020)

    Google Scholar 

  65. D. Shah et al., Dramatic enhancements in toughness of polyvinylidene fluoride nanocomposites via nanoclay-directed crystal structure and morphology. Adv. Mater. 16(14), 1173–1177 (2004)

    CAS  Google Scholar 

  66. Y. Jiang, Y. Deng, H. Qi, Microstructure dependence of output performance in flexible PVDF piezoelectric nanogenerators. Polymers 13(19), 3252 (2021)

    CAS  Google Scholar 

  67. C.-M. Wu, M.-H. Chou, W.-Y. Zeng, Piezoelectric response of aligned electrospun polyvinylidene fluoride/carbon nanotube nanofibrous membranes. Nanomaterials 8(6), 420 (2018)

    Google Scholar 

  68. X. Chen et al., Self-powered flexible pressure sensors with vertically well-aligned piezoelectric nanowire arrays for monitoring vital signs. J. Mater. Chem. C 3(45), 11806–11814 (2015)

    CAS  Google Scholar 

  69. A. Wang et al., Self-powered wearable pressure sensors with enhanced piezoelectric properties of aligned P (VDF-TrFE)/MWCNT composites for monitoring human physiological and muscle motion signs. Nanomaterials 8(12), 1021 (2018)

    Google Scholar 

  70. Y. Wang et al., A flexible piezoelectric force sensor based on PVDF fabrics. Smart Mater. Struct. 20(4), 4509 (2011)

    Google Scholar 

  71. S.M. Hosseini, A.A. Yousefi, Piezoelectric sensor based on electrospun PVDF-MWCNT-Cloisite 30B hybrid nanocomposites. Org. Electron. 50, 121–129 (2017)

    CAS  Google Scholar 

  72. J. Luo et al., Ultrasensitive self-powered pressure sensing system. Extreme Mech. Lett. 2, 28–36 (2015)

    Google Scholar 

  73. Li, B., J. Zheng, C. Xu (2013) Silver nanowire dopant enhancing piezoelectricity of electrospun PVDF nanofiber web. In: Fourth international conference on smart materials and nanotechnology in engineering. International Society for Optics and Photonics.

  74. G. Ren et al., Flexible pressure sensor based on a poly (VDF-TrFE) nanofiber web. Macromol. Mater. Eng. 298(5), 541–546 (2013)

    CAS  Google Scholar 

Download references

Acknowledgements

This research was conducted at the Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People’s Republic of China and was financially supported by the Zhejiang Provincial Top Key Academic Discipline of Chemical Engineering and Technology (ED2017003), People’s Republic of China.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally.

Corresponding authors

Correspondence to Arsalan Ahmed, Qinguo Fan or Jianzhong Shao.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2028 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, A., Jia, Y., Deb, H. et al. Ultra-sensitive all organic PVDF-TrFE E-spun nanofibers with enhanced β-phase for piezoelectric response. J Mater Sci: Mater Electron 33, 3965–3981 (2022). https://doi.org/10.1007/s10854-021-07590-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07590-y

Navigation