Skip to main content
Log in

Reduced leakage current and excellent thermal stability in lead-free BiFeO3–BaTiO3-based piezoelectric ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

It is extremely difficult to completely pole BiFeO3–BaTiO3 ceramics, due to the large leakage current under an electric field. In the present work, Ga and MnO2 were added into 0.7BiFO3–0.3BaTiO3 in order to decrease the leakage current, forming new solid solutions with the general formula of 0.7Bi1+xFe0.98Ga0.02O3–0.3BaTiO3 + ywt%MnO2. Additionally, excess Bi was incorporated into the ceramics to compensate for the volatilization of Bi during high-temperature processes. It was found that both-Bi-excess and MnO2 doping could reduce the leakage current as long as they were maintained at a suitable amount. A combination of strong piezoelectric activity (d33 = 167 pC/N) and a high Curie temperature (TC = 502 °C) was achieved in the ceramics with x = 0.05, y = 0.1. Moreover, the piezoelectric properties of the ceramics exhibited superior thermal stability, reflected in the fact that their d33 decreased by only 25%, from room temperature up to 450 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. T. Rojac, A. Bencan, B. Malic, G. Tutuncu, J.L. Jones, J.E. Daniels, D. Damjanovic, BiFeO3 ceramics: processing, electrical, and electromechanical properties. J. Am. Ceram. Soc. 97, 1993–2011 (2014)

    Article  CAS  Google Scholar 

  2. G. Catalan, J.F. Scott, Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463–2485 (2009)

    Article  CAS  Google Scholar 

  3. J.B. Neaton, C. Ederer, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, First-principles study of spontaneous polarization in multiferroic BiFeO3. Phys. Rev. B 71, 014113 (2005)

    Article  Google Scholar 

  4. J. Wu, Z. Fan, D. Xiao, J. Zhu, J. Wang, Multiferroic bismuth ferrite-based materials for multifunctional applications: ceramic bulks, thin films and nanostructures. Prog. Mater. Sci. 84, 335–402 (2016)

    Article  CAS  Google Scholar 

  5. E.T. Wefring, M.A. Einarsrud, T. Grande, Electrical conductivity and thermopower of (1–x)BiFeO3–xBi0.5K0.5TiO3 (x = 0.1, 0.2) ceramics near the ferroelectric to paraelectric phase transition. Phys. Chem. Chem. Phys. 17, 9420–9428 (2015)

    Article  CAS  Google Scholar 

  6. Q. Zhang, X. Zhu, Y. Xu, H. Gao, Y. Xiao, D. Liang, J. Zhu, J. Zhu, D. Xiao, Effect of La3+ substitution on the phase transitions, microstructure and electrical properties of Bi1−xLaxFeO3 ceramics. J. Alloy Compd. 546, 57–62 (2013)

    Article  CAS  Google Scholar 

  7. Z. Dai, Y. Akishige, Electrical properties of multiferroic BiFeO3 ceramics synthesized by spark plasma sintering. J. Phys. D 43, 445403 (2010)

    Article  Google Scholar 

  8. Y. Saad, I. Álvarez-Serrano, M.L. López, M. Hidouri, Structural and dielectric characterization of new lead-free perovskites in the (SrTiO3)–(BiFeO3) system. Ceram. Int. 42, 8962–8973 (2016)

    Article  CAS  Google Scholar 

  9. R. Kiyanagi, T. Yamazaki, Y. Sakamoto, H. Kimura, Y. Noda, K. Ohyama, S. Torii, M. Yonemura, J. Zhang, T. Kamiyama, Structural and magnetic phase determination of (1–x)BiFeO3–xBaTiO3 solid solution. J. Phys. Soc. Jpn. 81, 024603 (2012)

    Article  Google Scholar 

  10. Q.Q. Wang, Z. Wang, X.Q. Liu, X.M. Chen, Improved structure stability and multiferroic characteristics in CaTiO3-modified BiFeO3 ceramics. J. Am. Ceram. Soc. 95, 670–675 (2012)

    Article  CAS  Google Scholar 

  11. V. Dorcet, P. Marchet, G. Trolliard, Structural and dielectric studies of the Na0.5Bi0.5TiO3–BiFeO3 system. J. Eur. Ceram. Soc. 27, 4371–4374 (2007)

    Article  CAS  Google Scholar 

  12. T.P. Comyn, S.P. McBride, A.J. Bell, Processing and electrical properties of BiFeO3–PbTiO3 ceramics. Mater. Lett. 58, 3844–3846 (2004)

    Article  CAS  Google Scholar 

  13. M. Habib, M.H. Lee, F. Akram, M.-H. Kim, W.-J. Kim, T.K. Song, Temperature-insensitive piezoelectric properties of lead-free BiFeO3–BaTiO3 ceramics with high Curie temperature. J. Alloy Compd. 851, 156788 (2021)

    Article  CAS  Google Scholar 

  14. M. Habib, M.H. Lee, D.J. Kim, H.I. Choi, M.-H. Kim, W.-J. Kim, T.K. Song, Phase evolution and origin of the high piezoelectric properties in lead-free BiFeO3–BaTiO3 ceramics. Ceram. Int. 46, 22239–22252 (2020)

    Article  CAS  Google Scholar 

  15. M. Habib, M.H. Lee, D.J. Kim, H.I. Choi, M.-H. Kim, W.-J. Kim, T.K. Song, K.S. Choi, Enhanced piezoelectric performance of donor La3+-doped BiFeO3–BaTiO3 lead-free piezoceramics. Ceram. Int. 46, 7074–7080 (2020)

    Article  CAS  Google Scholar 

  16. D. Wang, G. Wang, S. Murakami, Z. Fan, A. Feteira, D. Zhou, S. Sun, Q. Zhao, I.M. Reaney, BiFeO3-BaTiO3: a new generation of lead-free electroceramics. J. Adv. Dielect. 8, 1830004 (2018)

    Article  CAS  Google Scholar 

  17. T. Zheng, Y. Ding, J. Wu, Bi nonstoichiometry and composition engineering in (1–x)Bi1+yFeO3+3y/2xBaTiO3 ceramics. RSC Adv. 6, 90831–90839 (2016)

    Article  CAS  Google Scholar 

  18. Y. Lin, L. Zhang, J. Yu, Stable piezoelectric property of modified BiFeO3–BaTiO3 lead-free piezoceramics. J. Mater. Sci. 26, 8432–8441 (2015)

    CAS  Google Scholar 

  19. Y. Guo, P. Xiao, R. Wen, Y. Wan, Q. Zheng, D. Shi, K.H. Lam, M. Liu, D. Lin, Critical roles of Mn-ions in enhancing the insulation, piezoelectricity and multiferroicity of BiFeO3-based lead-free high temperature ceramics. J. Mater. Chem. C 3, 5811–5824 (2015)

    Article  CAS  Google Scholar 

  20. H. Yang, C. Zhou, X. Liu, Q. Zhou, G. Chen, W. Li, H. Wang, Piezoelectric properties and temperature stabilities of Mn- and Cu-modified BiFeO3–BaTiO3 high temperature ceramics. J. Eur. Ceram. Soc. 33, 1177–1183 (2013)

    Article  CAS  Google Scholar 

  21. B.-W. Xun, N. Wang, B.-P. Zhang, X.-Y. Chen, Y.-Q. Zheng, W.S. Jin, R. Mao, K. Liang, Enhanced piezoelectric properties of 0.7BiFeO3–0.3BaTiO3 lead-free piezoceramics with high Curie temperature by optimizing Bi self-compensation. Ceram. Int. 45, 24382–24391 (2019)

    Article  CAS  Google Scholar 

  22. S. Cheng, B.-P. Zhang, L. Zhao, K.-K. Wang, Enhanced insulating and piezoelectric properties of 0.7BiFeO3–0.3BaTiO3 lead-free ceramics by optimizing calcination temperature: analysis of Bi3+ volatilization and phase structures. J. Mater. Chem. C 6, 3982–3989 (2018)

    Article  CAS  Google Scholar 

  23. S. Huang, Q. Li, L. Yang, J. Xu, C. Zhou, G. Chen, C. Yuan, G. Rao, Enhanced piezoelectric properties by reducing leakage current in Co modified 0.7BiFeO3–0.3BaTiO3 ceramics. Ceram. Int. 44, 8955–8962 (2018)

    Article  CAS  Google Scholar 

  24. Z. Yao, C. Xu, H. Liu, H. Hao, M. Cao, Z. Wang, Z. Song, W. Hu, A. Ullah, Greatly reduced leakage current and defect mechanism in atmosphere sintered BiFeO3–BaTiO3 high temperature piezoceramics. J. Mater. Sci. 25, 4975–4982 (2014)

    CAS  Google Scholar 

  25. F. Akram, R.A. Malik, T.K. Song, S. Lee, M.-H. Kim, Thermally-stable high dielectric properties of (1–x)(0.65Bi1.05FeO3–0.35BaTiO3)–xBiGaO3 piezoceramics. J. Eur. Ceram. Soc. 39, 2304–2309 (2019)

    Article  CAS  Google Scholar 

  26. S. Guan, H. Yang, R. Zhang, J. Pang, M. Jiang, Y. Sun, Structure, piezoelectric, ferroelectric and dielectric properties of lead-free ceramics 0.67BiFeO3–0.33BaTiO3–xBiGaO3+0.0035MnO2. J. Mater. Sci. 29, 16872–16879 (2018)

    CAS  Google Scholar 

  27. M.H. Lee, D.J. Kim, J.S. Park, S.W. Kim, T.K. Song, M.-H. Kim, W.-J. Kim, D. Do, I.-K. Jeong, High-performance lead-free piezoceramics with high Curie temperatures. Adv. Mater. 27, 6976–6982 (2015)

    Article  CAS  Google Scholar 

  28. S.O. Leontsev, R.E. Eitel, Dielectric and piezoelectric properties in Mn-modified (1–x)BiFeO3-xBaTiO3 ceramics. J. Am. Ceram. Soc. 92, 2957–2961 (2009)

    Article  CAS  Google Scholar 

  29. T. Zheng, Y. Ding, J. Wu, Effects of oxide additives on structure and properties of bismuth ferrite-based ceramics. J. Mater. Sci. 28, 11534–11542 (2017)

    CAS  Google Scholar 

  30. H.W. Joo, D.S. Kim, J.S. Kim, C.I. Cheon, Piezoelectric properties of Mn-doped 0.75BiFeO3–0.25BaTiO3 ceramics. Ceram. Int. 42, 10399–10404 (2016)

    Article  CAS  Google Scholar 

  31. Q. Li, J. Wei, J. Cheng, J. Chen, High temperature dielectric, ferroelectric and piezoelectric properties of Mn-modified BiFeO3-BaTiO3 lead-free ceramics. J. Mater. Sci. 52, 229–237 (2016)

    Article  Google Scholar 

  32. Z. Cen, C. Zhou, H. Yang, Q. Zhou, W. Li, C. Yuan, Structural, ferroelectric and piezoelectric properties of Mn-modified BiFeO3–BaTiO3 high-temperature ceramics. J. Mater. Sci. 24, 3952–3957 (2013)

    CAS  Google Scholar 

  33. J. Chen, J. Cheng, Enhanced thermal stability of lead-free high temperature 0.75BiFeO3–0.25BaTiO3 ceramics with excess Bi content. J. Alloy Compd. 589, 115–119 (2014)

    Article  CAS  Google Scholar 

  34. C. Zhou, H. Yang, Q. Zhou, G. Chen, W. Li, H. Wang, Effects of Bi excess on the structure and electrical properties of high-temperature BiFeO3–BaTiO3 piezoelectric ceramics. J. Mater. Sci. 24, 1685–1689 (2012)

    Google Scholar 

  35. W. Rheinheimer, M.J. Hoffmann, Grain growth transitions of perovskite ceramics and their relationship to abnormal grain growth and bimodal microstructures. J. Mater. Sci. 51, 1756–1765 (2016)

    Article  CAS  Google Scholar 

  36. A.G. Monteduro, S. Rizzato, C. Leo, S. Karmakar, F. Sirsi, A. Leo, V. Tasco, M. Esposito, A. Passaseo, A.P. Caricato, M. Martino, G. Maruccio, Dielectric and ferroelectric response of multiphase Bi-Fe-O ceramics. Phys. Status Solidi A 216, 1800584 (2019)

    Article  Google Scholar 

  37. T. Higuchi, W. Sakamoto, N. Itoh, T. Shimura, T. Hattori, T. Yogo, Valence state of Mn-doped BiFeO3–BaTiO3 ceramics probed by soft X-ray absorption spectroscopy. Appl. Phys. Express 1, 011502 (2008)

    Article  Google Scholar 

  38. X.-H. Liu, Z. Xu, S.-B. Qu, X.-Y. Wei, J.-L. Chen, Ferroelectric and ferromagnetic properties of Mn-doped 0.7BiFeO3–0.3BaTiO3 solid solution. Ceram. Int. 34, 797–801 (2008)

    Article  CAS  Google Scholar 

  39. A. Thakre, A. Kumar, M.-Y. Lee, D.R. Patil, S.-H. Kim, J. Ryu, Artificially induced normal ferroelectric behavior in aerosol deposited relaxor 65PMN–35PT thick films by interface engineering. J. Mater. Chem. C 9, 3403–3411 (2021)

    Article  CAS  Google Scholar 

  40. W. Sun, Z. Zhou, J. Luo, K. Wang, J.-F. Li, Leakage current characteristics and Sm/Ti doping effect in BiFeO3 thin films on silicon wafers. J. Appl. Phys. 121, 064101 (2017)

    Article  Google Scholar 

  41. J. Wu, J. Wang, D. Xiao, J. Zhu, Leakage mechanism of cation-modified BiFeO3 thin film. AIP Adv. 1, 022138 (2011)

    Article  Google Scholar 

  42. C.A. Randall, N. Kim, J.-P. Kucera, W. Cao, T.R. Shrout, Intrinsic and extrinsic size effects in fine-grained morphotropic-phase-boundary lead zirconate titanate ceramics. J. Am. Ceram. Soc. 81, 677–688 (1998)

    Article  CAS  Google Scholar 

  43. A. Bencan, G. Drazic, H. Ursic, M. Makarovic, M. Komelj, T. Rojac, Domain-wall pinning and defect ordering in BiFeO3 probed on the atomic and nanoscale. Nat. Commun. 11, 1762 (2020)

    Article  CAS  Google Scholar 

  44. Y. Pan, X. Dai, J. Li, Y. Yi, Y. Yu, C. He, Y. Liu, Y. Xiang, Y. Chen, Multiphase coexistence and enhanced piezoelectric properties in (1–x)(K0.45Na0.55)(Nb0.965Sb0.035)O3-xBi0.5(K0.91Li0.09)0.5(Hf0.3Zr0.7)O3 lead-free ceramics. Phys. Scr. 95, 065802 (2020)

    Article  CAS  Google Scholar 

  45. Y. Pan, Y. Yu, Y. Yi, Y. Liu, J. Li, X. Dai, C. He, X. Liu, Y. Chen, Structural evolution and electrical properties of lead-free (1–x)(K0.4Na0.6)Nb0.96Sb0.04O3-xBa0.1(Bi0.5Na0.5)0.9ZrO3 ceramics. Physica B 558, 122–126 (2019)

    Article  CAS  Google Scholar 

  46. J. Chen, J. Cheng, J. Guo, Z. Cheng, J. Wang, H. Liu, S. Zhang, Excellent thermal stability and aging behaviors in BiFeO3-BaTiO3 piezoelectric ceramics with rhombohedral phase. J. Am. Ceram. Soc. 103, 374–381 (2020)

    Article  CAS  Google Scholar 

  47. B. Jaffe, W.R. Cook Jr., H. Jaffe, Piezoelectric Ceramics (Academic Press, New York, 1971)

    Google Scholar 

  48. Y. Shi, F. Yan, X. He, K. Huang, B. Shen, J. Zhai, B-site-doped BiFeO3-based piezoceramics with enhanced ferro/piezoelectric properties and good temperature stability. J. Am. Ceram. Soc. 103, 6245–6254 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Kevin Chang (Krieger School of Arts and Sciences, Johns Hopkins University) for his assistance in proofreading the manuscript.

Funding

This work was supported by Fundamental Research Funds for the Central Universities (No. XDJK2020B003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Chen.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, X., Pan, Y., Xia, Z. et al. Reduced leakage current and excellent thermal stability in lead-free BiFeO3–BaTiO3-based piezoelectric ceramics. J Mater Sci: Mater Electron 33, 3949–3964 (2022). https://doi.org/10.1007/s10854-021-07589-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07589-5

Navigation