Skip to main content
Log in

Development of organic dosimeters based on fluorescence of radiation reaction products of coumarin-3-carboxylic acid

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We developed organic materials that can be used as tissue-equivalent dosimeters. We focused on radiation-induced reactions of a water-soluble coumarin derivative, coumarin-3-carboxyl acid (C3CA). C3CA was added to polyvinyl chloride (PVC), polymethyl methacrylate (PMMA), and polyvinyl alcohol (PVA); the photoluminescence spectra of each polymer containing C3CA before and after X-ray irradiation were measured; their sensitivities to X-rays were compared based on changes in their fluorescence intensity. The fluorescent molecules were produced from C3CA upon X-ray irradiation of the three types of polymers. The materials based on PVC, PMMA, and PVA were sensitive to X-rays for doses up to 400 Gy, 8 kGy, and 1 kGy, respectively. These results suggest that the radicals produced from the polymers upon irradiation were added to coumarin. Furthermore, the addition of trichloroacetic acid enhanced the dose sensitivity of the PMMA-based samples. These results indicate that radiation-induced reactions of C3CA can be utilized as tissue-equivalent dosimeters and PVC is the best polymer for this material because of its high dose sensitivity. The difference in the G values and the reactivity of radicals produced in the polymers contributes to the difference in dose sensitivities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data presented in this study are available within this article.

References

  1. M. Cormack, Int. J. Radiat. Oncol. Biol. Phys. 13, 623–630 (1987)

    Article  CAS  Google Scholar 

  2. Y. Censor, J. Unkelbach, Phys. Med. 28, 109–118 (2012)

    Article  Google Scholar 

  3. D.M. Ghemis, L.G. Marcu, Crit. Rev. Oncol. Hematol. 163, 103396 (2021)

    Article  Google Scholar 

  4. J. Bertholet, Y. Vinogradskiy, Hu. Yanle, D.J. Carlson, Int. J. Radiat. Oncol. Biol. Phys. 110, 625–628 (2021)

    Article  Google Scholar 

  5. C. Park, G. Zhang, H. Choy, Clin. Lung Cancer 8, 187–194 (2006)

    Article  Google Scholar 

  6. R. G. Kelly, K. J. Jordan, J. J. Battista, Med. Phys. 1741–50 (1998)

  7. B.C. Bhatt, Prot. Environ. 34, 6 (2011)

    Google Scholar 

  8. E.G. Yukihara, S.W.S. McKeever, Phys. Med. Biol. 53, 3 (2008)

    Article  Google Scholar 

  9. J.H. Schulman, J.R. GIinther, C.C. Klick, J. Phys. 22, 1479 (1951)

    CAS  Google Scholar 

  10. K. Asai, T. Ubukata, M. Koshimizu, Y. Fujimoto, T. Yanagida, H. Kawamoto, K. Asai, J. Mater. Sci. 30, 10211–10216 (2019)

    CAS  Google Scholar 

  11. S. Devic, N. Tomic, D. Lewis, Phys. Med. 32, 541–546 (2016)

    Article  Google Scholar 

  12. S.J. Doran, Appl. Radiat. Isot. 67, 393–398 (2009)

    Article  CAS  Google Scholar 

  13. K. Jordan, N. Avvakumov, Phys. Med. Biol. 54, 6773–6789 (2009)

    Article  CAS  Google Scholar 

  14. S. Babic, J. Battista, K. Jordan, Phys. Med. Biol. 54, 6791–6808 (2009)

    Article  CAS  Google Scholar 

  15. A.T. Nasr, K. Alexsander, L.J. Schreiner, K.B. McAuley, Phys. Med. Biol. 60, 4664–4683 (2015)

    Google Scholar 

  16. J. Adamovics, M.J. Maryanski, Med. Phys. 30, 1349 (2003)

    Google Scholar 

  17. J. Adamovics, M.J. Maryanski, Radiat. Prot. Dosimetry. 120(1–4), 107–112 (2006)

    Article  CAS  Google Scholar 

  18. L. Zhao, J. Das, Q. Zhao, A. Thomas, J. Adamovics, M. Oldman, J. Phys. Conf. Ser. 250(2010) 012035.

  19. H. Miyoshi, Y. Mashiko, S. Maeda, K. Yamada, J. Mastumura, J. Radiat. Nucl. Chem. 308, 469–475 (2016)

    Article  CAS  Google Scholar 

  20. S.I. Hayashi, K. Ono, K. Fujino, S. Ikeda, K. Tanaka, Radiat. Meas. 131, 106226 (2020)

    Article  CAS  Google Scholar 

  21. L.J. Schreiner, J. Phys. Conf. Ser. 3, 9–21 (2004)

    Article  CAS  Google Scholar 

  22. S. Yamashita, G. Baldacchino, T. Maeyama, M. Taguchi, Y. Muroya, Mingzhang, A. Kimura, T. Murakami, Y. Katsumura, Free Radic. Res. 46, 861–871 (2012)

    Article  CAS  Google Scholar 

  23. G. Louit, M. Hanedanian, F. Taran, H. Coffigny, J.P. Renault, S.P. Guillaume, Analyst 134, 250–255 (2009)

    Article  CAS  Google Scholar 

  24. K. Tornberg, S. Olsson, FEMS Microbiol. Ecol. 40, 13–20 (2002)

    Article  CAS  Google Scholar 

  25. K. Gopakumar, U.R. Kini, S.C. Ashawa, N.S. Bhandari, G.U. Krishinan, D. Krishnan, Radiat. Effect. 32, 199–203 (1977)

    Article  CAS  Google Scholar 

  26. G. Baldacchino, T. Maeyama, S. Yamashita, M. Taguchi, A. Kimura, Y. Katsumura, T. Murakami, Chem. Phys. Lett. 468, 275–279 (2009)

    Article  CAS  Google Scholar 

  27. M. Komatsu, T.N. Rao, A. Fujishima, Chem. Lett. 32, 396–397 (2003)

    Article  CAS  Google Scholar 

  28. J.N. Baxter, F.J. Johnston, Radiat. Res. 33, 311–324 (1968)

    Article  CAS  Google Scholar 

  29. Vandecasteele, S. Ghysel, S.H. Baete, Y. De Deene, Phys. Med. Biol. 56, 627–651 (2011)

    Article  CAS  Google Scholar 

  30. I. Kawamura, H. Kawamoto, Y. Fujimoto, M. Koshimizu, K. Asai, Jpn. J. Appl. Phys. 59, 096001 (2020)

    Article  CAS  Google Scholar 

  31. P.S. Skyt, Wahlstedt, E.S. Yates, L.P. Muren, J.B.B. Petersen, P. Balling, J. Phys. Conf. Ser. 444, 012036 (2013)

    Article  Google Scholar 

  32. L. C. Sawyer, “Polymer Microscopy”. (Springer Science & Business Media, New York, 2012)

Download references

Acknowledgements

This research was supported by a Grant-in-Aid for Scientific Research (A) (No. 19H00880, 2018–2021). Part of this research is based on the Cooperative Research Project of the Research Center for Biomedical Engineering, Ministry of Education, Culture, Sports, Science, and Technology.

Author information

Authors and Affiliations

Authors

Contributions

Writing and preparation of the original draft and investigation was done by RT; conceptualization, methodology, validation, formal analysis, writing, reviewing, and editing of the manuscript, supervision, project administration, and funding acquisition was done by MK; investigation was done by IK; and writing, reviewing, and editing of the manuscript, supervision, and project administration was done by YF and KA. All the authors have read the manuscript and have approved this submission.

Corresponding author

Correspondence to Ritsuha Tanaka.

Ethics declarations

Conflict of interest

This manuscript has not been published and is not under consideration for publication elsewhere. The authors report no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanaka, R., Koshimizu, M., Kawamura, I. et al. Development of organic dosimeters based on fluorescence of radiation reaction products of coumarin-3-carboxylic acid. J Mater Sci: Mater Electron 33, 3938–3948 (2022). https://doi.org/10.1007/s10854-021-07588-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07588-6

Navigation