Skip to main content
Log in

Using a novel graphene/carbon nanotubes composite for enhancement of the supercapacitor electrode capacitance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Graphene and carbon nanotubes have drawn scientific attention as effective nanomaterials for electrical supercapacitors. This study aims to increase the productivity and the performance of eco-friendly supercapacitor electrodes at a low cost. This paper investigates the capacity enhancement of the supercapacitor carbon-based electrodes utilizing varied ratios of graphene and carbon nanotubes. The effects of electrolyte concentrations on supercapacitor electrode electrochemical performance have been studied as well. Using the electrochemical exfoliation, and arc discharge of graphite rods, the graphene, and carbon nanotubes were prepared, respectively. X-ray diffraction, Raman shift spectrum, and high-resolution transmission electron microscopy (HRTEM) have been used to investigate the nanomaterials. The micrographs of the HRTEM indicate that the average tube diameters of the carbon nanotubes are about 179 ± 81 nm. The effective carbon nanocomposite electrodes are analyzed by the traditional electrochemical cyclic voltammetry technique. The highest specific capacitance of graphene/carbon nanotubes composite amounts to about ≈ 179 F/g at a scan rate of about 10 mV/sec for a 3:1 graphene to carbon nanotubes ratio with 1 M NaCl as the electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data during the current study are included in this published article.

References

  1. F.B. Wu, B. Yang, J.L. Ye, Grid-scale energy storage systems and applications (Academic Press, Cambridge, 2019)

    Google Scholar 

  2. A. Elasser, in PCIM Eur. Conf. Proc. (2020), pp. 1833–1836

  3. D.D. Sarma, A.K. Shukla, ACS Energy Lett. 3, 2841 (2018). https://doi.org/10.1021/acsenergylett.8b01966

    Article  CAS  Google Scholar 

  4. H. Pan, J. Li, Y.P. Feng, Nanoscale Res. Lett. 5, 654 (2010). https://doi.org/10.1007/s11671-009-9508-2

    Article  CAS  Google Scholar 

  5. H. Mi, J. Liu, H. Sun, S. Wu, H. Zhou, H. Cao, J. Chen, Key Eng. Mater. 519, 206–210 (2012). https://doi.org/10.4028/www.scientific.net/KEM.519.206

    Article  CAS  Google Scholar 

  6. M. Lira-Cantú, P. Gómez-Romero, Hybrid Nanocomposites Nanotechnology (Springer, Boston, 2009), pp. 289–319

    Book  Google Scholar 

  7. H. Xu, Q. Gao, Mater. Sci. Forum 688, 326–333 (2011). https://doi.org/10.4028/www.scientific.net/MSF.688.326

    Article  CAS  Google Scholar 

  8. L.L. Zhang, R. Zhou, X.S. Zhao, J. Mater. Chem. 20, 5983 (2010). https://doi.org/10.1039/c000417k

    Article  CAS  Google Scholar 

  9. L. Yue, X. Wang, T. Sun, H. Liu, Q. Li, N. Wu, H. Guo, W. Yang, Chem. Eng. J. (2019). https://doi.org/10.1016/j.cej.2019.121959

    Article  Google Scholar 

  10. X. Chen, K. Kierzek, K. Wenelska, K. Cendrowski, J. Gong, X. Wen, T. Tang, P.K. Chu, E. Mijowska, Chemistry 8, 2627 (2013). https://doi.org/10.1002/asia.201300093

    Article  CAS  Google Scholar 

  11. C. Liu, Z. Yu, D. Neff, A. Zhamu, B.Z. Jang, Nano Lett. 10, 4863 (2010). https://doi.org/10.1021/nl102661q

    Article  CAS  Google Scholar 

  12. I. Oh, M. Kim, J. Kim, Chem. Eng. J. 273, 82 (2015). https://doi.org/10.1016/j.cej.2015.03.078

    Article  CAS  Google Scholar 

  13. H. Hu, J. Wang, C. Cui, W. Qian, Carbon 154, 1 (2019). https://doi.org/10.1016/j.carbon.2019.07.093

    Article  CAS  Google Scholar 

  14. C. Schütter, S. Pohlmann, A. Balducci, Adv. Energy Mater. (2019). https://doi.org/10.1002/aenm.201900334

    Article  Google Scholar 

  15. R. Sabry, M. Fikry, O.S. Ahmed, A.R.N. Zekri, A.F. Zedan, J. Phys. Conf. Ser. 1472, 012005 (2020). https://doi.org/10.1088/1742-6596/1472/1/012005

    Article  CAS  Google Scholar 

  16. H. Elhaes, M. Morsy, I.S. Yahia, M. Ibrahim, Opt. Quantum Electron. (2021). https://doi.org/10.1007/s11082-021-02945-5

    Article  Google Scholar 

  17. M. Fikry, M. Mohie, M. Gamal, A. Ibrahim, Opt. Quantum Electron. (2021). https://doi.org/10.1007/s11082-021-02770-w

    Article  Google Scholar 

  18. X. Dong, X. Wang, J. Wang, H. Song, X. Li, L. Wang, M.B. Chan-Park, C.M. Li, P. Chen, Carbon 50, 4865 (2012). https://doi.org/10.1016/j.carbon.2012.06.014

    Article  CAS  Google Scholar 

  19. T. Iqbal, S. Fatima, T. Bibi, M. Zafar, Opt. Quantum Electron. (2021). https://doi.org/10.1007/s11082-021-02852-9

    Article  Google Scholar 

  20. T. Radsar, H. Khalesi, V. Ghods, Opt. Quantum Electron. (2021). https://doi.org/10.1007/s11082-021-02839-6

    Article  Google Scholar 

  21. Q. Ke, J. Wang, J. Mater. 2, 37 (2016). https://doi.org/10.1016/J.JMAT.2016.01.001

    Article  Google Scholar 

  22. Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya, L.C. Qin, Phys. Chem. Chem. Phys. 13, 17615 (2011). https://doi.org/10.1039/c1cp21910c

    Article  CAS  Google Scholar 

  23. Z. Zhu, Nano-Micro Lett. 9, 1 (2017). https://doi.org/10.1007/s40820-017-0128-6

    Article  CAS  Google Scholar 

  24. J. Ye, B. Hu, Y. Jin, Z. Wang, Y. Xi, L. Fang, Q. Pan, Electrochim. Acta (2020). https://doi.org/10.1016/j.electacta.2020.136372

    Article  Google Scholar 

  25. K.A. Sammed, L. Pan, M. Asif, M. Usman, T. Cong, F. Amjad, M.A. Imran, Sci. Rep. 10, 1 (2020). https://doi.org/10.1038/s41598-020-58162-9

    Article  CAS  Google Scholar 

  26. C.Y. Su, A.Y. Lu, Y. Xu, F.R. Chen, A.N. Khlobystov, L.J. Li, ACS Nano 5, 2332 (2011). https://doi.org/10.1021/nn200025p

    Article  CAS  Google Scholar 

  27. A. Mohamed, A.A. Khattab, T.A.S. Osman, M. Zaki, J. Nanotechnol. (2013). https://doi.org/10.1155/2013/279090

    Article  Google Scholar 

  28. J. Wu, H. Wang, J. Qiu, J. Shao, K. Zhang, L. Yan, Prog. Nat. Sci. Mater. 30, 312 (2020). https://doi.org/10.1016/j.pnsc.2020.05.007

    Article  CAS  Google Scholar 

  29. A.H. Wazir, I.W. Kundi, J. Chem. Soc. Pakistan 38, 11 (2016)

    CAS  Google Scholar 

  30. W. Yang, M. Zhou, J. Cai, L. Liang, G. Ren, L. Jiang, J. Mater. Chem. A 5, 8070 (2017). https://doi.org/10.1039/c7ta01534h

    Article  CAS  Google Scholar 

  31. M.K. Punith Kumar, M. Nidhi, C. Srivastava, RSC Adv. 5, 24846 (2015). https://doi.org/10.1039/c5ra01304f

    Article  CAS  Google Scholar 

  32. E.J. Mohammad, M.M. Kareem, A.J. Atiyah, Ukr. J. Phys. 64, 276 (2019). https://doi.org/10.15407/ujpe64.4.276

    Article  Google Scholar 

  33. V. Gupta, T.A. Saleh, Carbon Nanotub. (2011). https://doi.org/10.5772/18009

    Article  Google Scholar 

  34. R.S. Edwards, K.S. Coleman, Nanoscale 5, 38 (2013). https://doi.org/10.1039/c2nr32629a

    Article  CAS  Google Scholar 

  35. K. Parvez, R. Li, S.R. Puniredd, Y. Hernandez, F. Hinkel, S. Wang, X. Feng, K. Müllen, ACS Nano 7, 3598 (2013). https://doi.org/10.1021/nn400576v

    Article  CAS  Google Scholar 

  36. N.M.S. Hidayah, W.W. Liu, C.W. Lai, N.Z. Noriman, C.S. Khe, U. Hashim, H.C. Lee, PAIP Conf. Proc. (2017). https://doi.org/10.1063/1.5005764

    Article  Google Scholar 

  37. Y. Zhang, J. Zhao, Y. Fang, Y. Liu, X. Zhao, Nanoscale 10, 17824 (2018). https://doi.org/10.1039/c8nr05465g

    Article  CAS  Google Scholar 

  38. V.V. Bolotov, V.E. Kan, E.V. Knyazev, P.M. Korusenko, S.N. Nesov, Y.A. Sten’kin, V.A. Sachkov, I.V. Ponomareva, New Carbon Mater. 30, 385 (2015). https://doi.org/10.1016/S1872-5805(15)60197-4

    Article  CAS  Google Scholar 

  39. M.S. Roslan, K.T. Chaudary, Z. Haider, A.F.M. Zin, J. Ali, AIP Conference Proceedinds (American Institute of Physics Inc., College Park, 2017)

    Google Scholar 

  40. D. Yu, L. Dai, J. Phys. Chem. Lett. 1, 467 (2010). https://doi.org/10.1021/jz9003137

    Article  CAS  Google Scholar 

  41. C.R. Chen, H. Qin, H.P. Cong, S.H. Yu, Adv. Mater. (2019). https://doi.org/10.1002/adma.201900573

    Article  Google Scholar 

  42. J. Yan, T. Wei, B. Shao, Z. Fan, W. Qian, M. Zhang, F. Wei, Carbon 48, 487 (2010). https://doi.org/10.1016/j.carbon.2009.09.066

    Article  CAS  Google Scholar 

  43. K.M. Ajay, M.N. Dinesh, IOP Conf. Ser. Mater. Sci. Eng. (2018). https://doi.org/10.1088/1757-899X/310/1/012083

    Article  Google Scholar 

  44. Y.S. Kim, K. Kumar, F.T. Fisher, E.H. Yang, Nanotechnology (2012). https://doi.org/10.1088/0957-4484/23/1/015301

    Article  Google Scholar 

  45. Y. Wang, Y. Wu, Y. Huang, F. Zhang, X. Yang, Y. Ma, Y. Chen, J. Phys. Chem. C 115, 23192 (2011). https://doi.org/10.1021/jp206444e

    Article  CAS  Google Scholar 

  46. L. Dai, D.W. Chang, J.B. Baek, W. Lu, Small 8, 1130 (2012). https://doi.org/10.1002/smll.201101594

    Article  CAS  Google Scholar 

  47. X. Lu, H. Dou, B. Gao, C. Yuan, S. Yang, L. Hao, L. Shen, X. Zhang, Electrochim. Acta 56, 5115 (2011). https://doi.org/10.1016/j.electacta.2011.03.066

    Article  CAS  Google Scholar 

  48. B.B. Sales, F. Liu, O. Schaetzle, C.J.N. Buisman, H.V.M. Hamelers, Electrochim. Acta (2012). https://doi.org/10.1016/j.electacta.2012.05.069

    Article  Google Scholar 

  49. C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, J. Zhang, Chem. Soc. Rev. 44, 7484 (2015)

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the Science and Technology Development Fund (STDF), Cairo, Egypt, Award Number 39489.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Fikry.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fikry, M., Abbas, M., Sayed, A. et al. Using a novel graphene/carbon nanotubes composite for enhancement of the supercapacitor electrode capacitance. J Mater Sci: Mater Electron 33, 3914–3924 (2022). https://doi.org/10.1007/s10854-021-07585-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07585-9

Navigation