Skip to main content

Advertisement

Log in

Effect of different anode electrodes with Li(Li0.25Co0.37Mn0.38)O2 as cathode material on Li: ion battery performance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present work, Li-rich layered Li(Li0.25Co0.37Mn0.38)O2 (LiCMO) material is prepared using sol–gel technique. The effect of calcination temperature on the structural and morphological characteristics of LiCMO is studied. The electrochemical performance of layered LiCMO/graphite (Cell 1) and LiCMO/Li (Cell 2) has been investigated. The charge transfer resistance (Rct), lithium diffusion coefficients, and discharging capacity are found to be 16,242 Ω, 3.89 × 10–11 S−1 cm2, and 5.26 mAhg−1 and 16 Ω, 20.78 × 10–8 S−1 cm2, and 323 mAhg−1 for Cells 1 and 2, respectively. The presence of efficient lithium-ion transfer tendency and minimal kinetic barrier for lithium diffusion results in enhanced electrochemical properties of Cell 2. Appreciable results for (LiCMO/Li) coin cell make it a unique combination of LiCMO as cathode with Li as anode for the high energy density lithium-ion battery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All the findings/data that are presented in this work are based on the original experimental results taken by the authors. The data are not available on the web and not being shared anywhere.

References

  1. M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104, 4245–4269 (2004)

    Article  CAS  Google Scholar 

  2. L. Shan, Y. Wang, S. Liang, B. Tang, Y. Yang, Z. Wang, B. Lu, J. Zhou, Interfacial adsorption–insertion mechanism induced by phase boundary toward better aqueous Zn-ion battery. Info Mat. 3, 1028–1036 (2021)

    CAS  Google Scholar 

  3. J. Ge, B. Wang, J. Zhou, S. Liang, A.M. Rao, B. Lu, Hierarchically structured nitrogen-doped carbon microspheres for advanced potassium ion batteries. ACS Mater. Lett. 2, 853–860 (2020)

    Article  CAS  Google Scholar 

  4. X. Cao, A. Pan, B. Yin, G. Fang, Y. Wang, X. Kong, T. Zhu, J. Zhou, G. Cao, Nanoflake-constructed porous Na3V2(PO4)3/C hierarchical microspheres as a bicontinuous cathode for sodium-ion batteries applications. Nano Energy 60, 312–323 (2019)

    Article  CAS  Google Scholar 

  5. Y. Wang, J. Huang, L. Wang, Z. Ye, "A nanostructured ferroelectric lithium tantalate as polysulfide immobilizer and promoter for improved lithium-sulfur batteries. J. Alloys Compd. 807, 151672 (2019)

    Article  CAS  Google Scholar 

  6. Z. Zhang, Electrochimica acta cycle performance improvement of LiFePO4 cathode with polyacrylic acid as binder. Electrochim. Acta 80, 440–444 (2012)

    Article  CAS  Google Scholar 

  7. R. Gupta, S. Saha, M. Tomar, V. Gupta, Effect of manganese doping on conduction in olivine LiFePO 4. J. Mater. Sci. Mater. Electron. 28, 5192–5199 (2017)

    Article  CAS  Google Scholar 

  8. R.E. Ruther, A.F. Callender, H. Zhou, S.K. Martha, Raman microscopy of lithium-manganese-rich transition metal oxide cathodes raman microscopy of lithium-manganese-rich transition metal. J. Electrochem. Soc. 162 (2015)

  9. Y. Bin, S. Chen, M. Zou, L. Geng, X. Sun, X. Zhang, K. Wang, Y. Ma, Improving anode performances of lithium-ion capacitors employing carbon–Si composites. Rare Met. 38, 1113–1123 (2019)

    Article  Google Scholar 

  10. P. Sengodu, A.D. Deshmukh, Conducting polymers and their inorganic composites for advanced Li-ion batteries. RSC Adv. 5, 42109–42130 (2015)

    Article  CAS  Google Scholar 

  11. D. Hernandez, F. Mendoza, E. Febus, R. Weiner, G. Morell, Binder free SnO2-CNT composite as anode material for li-ion battery. J. Nanotechnol. (2014)

  12. W. Zhang, L. Du, Z. Chen, J. Hong, L. Yue, ZnO Nanocrystals as anode electrodes for lithium-ion batteries. J. Nanomater. 8056302, (2016)

  13. A. Mishra, A. Mehta, S. Basu, S.J. Malode, N.P. Shetti, S.S. Shukla, M.N. Nadagouda, T.M. Aminabhavi, Electrode materials for lithium-ion batteries. Mater. Sci. Energy Technol. 1, 182–187 (2018)

    Google Scholar 

  14. J. Asenbauer, T. Eisenmann, M. Kuenzel, A. Kazzazi, Z. Chen, D. Bresser, The success story of graphite as a lithium-ion anode material—fundamentals, remaining challenges, and recent developments including silicon (oxide) composites. Sustain. Energy Fuels. 4 (2020)

  15. K. Redel, A. Kulka, A. Plewa, J. Molenda, High-performance li-rich layered transition metal oxide cathode materials for li-ion batteries. J. Electrochem. Soc. 166 (2019)

  16. L. Wang, Q. Zhang, J. Zhu, X. Duan, Z. Xu, Y. Liu, H. Yang, B. Lu, Nature of extra capacity in MoS2 electrodes: molybdenum atoms accommodate with lithium. Energy Storage Mater. 16, 37–45 (2019)

    Article  CAS  Google Scholar 

  17. D. Wang, X. Wu, Z. Wang, L. Chen, Cracking causing cyclic instability of LiFePO4 cathode material. J. Power Sour. 140, 125–128 (2005)

    Article  CAS  Google Scholar 

  18. D. Lee, H. Lee, T. Kim, K. Lee, J. Choi, Phase-tuned nanoporous vanadium pentoxide as binder-free cathode for lithium ion battery. Electrochim. Acta 330, 135192 (2020)

    Article  CAS  Google Scholar 

  19. Y. Tang, X. Rui, Y. Zhang, T. Lim, Z. Dong, H. Hng, X. Chen, Q. Yan, Z. Chen, Vanadium pentoxide cathode materials for high-performance lithium-ion batteries enabled by a hierarchical nanoflower structure via an electrochemical process. J. Mater. ChemA 1, 82–88 (2013)

    Article  CAS  Google Scholar 

  20. B. Hu, X.B. Lou, C. Li, F.S. Geng, C. Zhao, J.Y. Wang, M. Shen, B.W. Hu, Reversible phase transition enabled by binary Ba and Ti-based surface modification for high voltage LiCoO2 cathode. J. Power Sour. 438, 226954–226961 (2019)

    Article  CAS  Google Scholar 

  21. K. Amine, Improved lithium manganese oxide spinel/graphite Li-ion cells for high-power applications. J. Power Sour. 129, 14–19 (2004)

    Article  CAS  Google Scholar 

  22. Z. Li, Electrochemical kinetics of the Li[Li0.23Co0.3Mn 0.47]O2 cathode material studied by GITT and EIS. J. Phys. Chem. C 114, 22751–22757 (2010)

    Article  CAS  Google Scholar 

  23. S.K. Kim, D.H. Yang, J.S. Sohn, Y.C. Jung, Resynthesis of LiCo 1-xMnxO2 as a cathode material for lithium secondary batteries. Met. Mater. Int. 18, 321–326 (2012)

    Article  CAS  Google Scholar 

  24. C.L. Xu Hierarchical hollow structured lithium nickel cobalt manganese oxide microsphere synthesized by template-sacrificial route as high performance cathode for lithium ion batteries. J. Alloys Compd. 434–442 (2019)

  25. X. Wang, H. Zhang, Effect of calcining temperatures on the electrochemical performances of LiNi0.5Co0.2Mn0.3O2 cathode material for lithium ion batteries. Int. J. Electrochem. Sci. 16 (2021)

  26. C. Lu, H. Wang, Effects of cobalt-ion doping on the electrochemical properties of spinel lithium manganese oxide prepared via a reverse-micelle route. J. Eur. Ceram. Soc. 23, 865–871 (2003)

    Article  CAS  Google Scholar 

  27. P. Sivaraj, K.P. Abhilash, B. Nalini, P. Balraju, S. Kumar, S. Jayapandi, P. Selvin, Structure, dielectric, and temperature-dependent conductivity studies of the Li2FeSiO4/C nano cathode material for lithium-ion batteries. Ionics 25, 2041–2056 (2019)

    Article  CAS  Google Scholar 

  28. X. Sun, J. He, R. Qiang, N. Nan, X. You, Y. Zhou, W. Shao, F. Liu, R. Liu, Electrospun conductive nanofiber for a wearable super capacitor with high volumetric energy density. Materials. 12 (2019)

  29. X. You, C. Qiao, D. Peng, W. Liu, C. Li , H. Zhao, H. Qi, X. Cai, Y. Shao, X. Shi, Preparation of alkaline polyelectrolyte membrane based on quaternary ammonium salt–modified cellulose and its application in Zn–Air flexible battery. Polymers. 3 (2021)

  30. S. Hansen, E. Quiroga-González, J. Carstensen, H. Foll, Size-dependent cyclic voltammetry study of silicon microwire anodes for lithium ion batteries. Electrochim. Acta 217, 283–291 (2016)

    Article  CAS  Google Scholar 

  31. H. Chang, Y. Lu, J. Chen, C. Chen, F. Lee, J. Chen, Y. Chen, C. Chang, P. Yeh, W. Chou, Y. Liou, C. Dong, Nanoflaky MnO2/functionalized carbon nanotubes for supercapacitors: an in situ X-ray absorption spectroscopic investigation. Nanoscale. (2014)

  32. S. Sekar, Y. Lee, D. Young Kim, S. Lee,”Substantial LIB anode performance of graphitic carbon nanoflakes derived from biomass green-tea waste. Nanomaterials 9, 871 (2019)

  33. D. Ouyang, M. Chen, J. Liu, R. Wei, J. Weng, J. Wang, Investigation of a commercial lithium-ion battery under overcharge/over-discharge failure conditions. RSC Adv. 8 (2018)

  34. T. Kim, S. Moon, Novel practical life cycle prediction method by entropy estimation of li-ion battery. Electronics. 10 (2021)

  35. L. Wang, Z.B. Wang, F. Da, B.S. Liu, Y. Zhang, Y.X. Zhou, Investigation on performances of Li1.2Co0.4Mn0.4O2 prepared by self-combustion reaction as stable cathode for lithium-ion batteries. Ceram. Int. 42, 14818–14825 (2016)

    Article  CAS  Google Scholar 

  36. Y. Sung, S. Taek, Y. Sun, Low temperature electrochemical properties of Li[NixCoyMn1-x-y]O2 cathode materials for lithium-ion batteries. J. Electrochem. Soc. 161, A1514–A1520 (2014)

    Article  Google Scholar 

  37. F. Chaochao, L. Guangshe, D. Luo, J. Zheng, L. Liping, Gel-combustion synthesis of Li1.2Mn0.4Co0.4O2 composites with a high capacity and superior rate capability for lithium-ion batteries. J. Mater. Chem. A 2, 1471–1483 (2014)

    Article  Google Scholar 

  38. G. Ning, B. Haran, B.N. Popov, Capacity fade study of lithium-ion batteries cycled at high discharge rates. J. Power Sources 117, 160–169 (2003)

    Article  CAS  Google Scholar 

  39. B. Piskin, M.K. Aydinol, Development and characterization of layered Li(NixMnyCo1−x−y)O2 cathode materials for lithium ion batteries. Int. J. Hydrogen Energy 41, 9852–9859 (2016)

    Article  CAS  Google Scholar 

  40. F. Wu, Spinel/layered heterostructured cathode material for high-capacity and high-rate li-ion batteries. Adv. Mater. 25, 3722–3726 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of authors, Vandana, is thankful to CSIR for financial support, and Department of Physics & Astrophysics, University of Delhi for providing characterization facilities.

Funding

No funding information is available for this work.

Author information

Authors and Affiliations

Authors

Contributions

V involved in conceptualization, methodology, writing—original draft, analysis, and investigation. RG participated in validation, investigation, writing—original draft, and editing. AC took part in validation, investigation, writing—original draft and editing, and analysis. RPT contributed to validation, formal analysis, resources, writing-review, and editing conceptualization. MT participated in conceptualization, methodology, resources, writing-review and editing, supervision, and project administration.

Corresponding author

Correspondence to Monika Tomar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

One of the authors, Prof. Vinay Gupta unfortunately passed away prior to submission of the manuscript. This is one of his last research works.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 682 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vandana, Gupta, R., Chaudhary, A. et al. Effect of different anode electrodes with Li(Li0.25Co0.37Mn0.38)O2 as cathode material on Li: ion battery performance. J Mater Sci: Mater Electron 33, 3901–3913 (2022). https://doi.org/10.1007/s10854-021-07584-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07584-w

Navigation