Skip to main content
Log in

Study on the electronic band structure of ZnO–SnO2 heterostructured nanocomposites with mechanistic investigation on the enhanced photoluminescence and photocatalytic properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Sol–gel method of synthesizing nanocomposites (NCs) of two metal oxides (ZnO & SnO2) was implemented along with the pristine samples. The structural modulation occurred due to variable concentration of the above two materials in the NCs has been studied by x-ray diffraction (XRD) measurement. Hexagonal wurtzite phase of ZnO with tetragonal rutile phase of SnO2 was found to be formed for the NCs without any impurity phases. The alteration in the particle shape and morphology has been investigated by FESEM. Optical absorbance study shows that the band gaps of NCs are of an intermittent value compared to the band gaps of the individual oxides. The near band edge emission (NBE) of ZnO is absent in the photoluminescence (PL) emission spectra of NCs which may refer to a decrement in the direct recombination rate of electron–hole (eh) pairs. Fast recombination of charge carriers is hindered due to the introduction of defect centers which results in the improvisation in visible emissions in the PL spectra of nanocomposites. The NCs have shown better efficiency in degrading phenol and Rhodamine B as compared to the pristine samples. Increased eh separation efficiency is expected in the heterojunction along with the availability of more number of active sites leading to the above observation. Highly stable and reusable photocatalysts are formed relevant to different applications. In addition, first-principles density functional calculations show the composite heterostructure facilitates the transfer of photo-generated electrons due to decrease in the band gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and material

Data will be available with suitable request from researchers.

Code availability

NA.

References

  1. A.P. Tiwari and S.S. Rohiwal, in Hybrid Nanostructures for Cancer Theranostics ed. by R. A. Bohara and N. Thorat (Elsevier, Netherlands, 2019), p. 17.

  2. Z. Wang, Y. Liu, Z. Zhang, Handbook of Nanophase and Nanostructured Materials (Springer, Boston, 2003), pp. 1–1481

    Book  Google Scholar 

  3. R.N. Bhargava, D. Gallagher, X. Hong, A. Nurmikko, Phys. Rev. Lett. 72, 416 (1994)

    Article  CAS  Google Scholar 

  4. A.K. Nair, A. Mayeen, L.K. Shaji, M.S. Kala, S. Thomas and N. Kalarikkal, in Characterization of Nanomaterials: Advances and Key Technologies. ed. by S.M. Bhagyaraj, O.S. Oluwafemi, N. Kalarikkal, S. Thomas (Elsevier, Amsterdam, 2018), pp. 269–299

    Chapter  Google Scholar 

  5. C. Feldmann, T. Jüstel, C.R. Ronda, P.J. Schmidt, Adv. Func. Mater. 13(7), 511 (2003)

    Article  CAS  Google Scholar 

  6. W. Zhou, J.J. Coleman, Curr. Opin. Solid State Mater. Sci. 20, 352 (2016)

    Article  CAS  Google Scholar 

  7. P. Michler, Single Semiconductor Quantum Dots, 1st edn. (Springer, Berlin, 2009), pp. 1–389

    Book  Google Scholar 

  8. A. Sternig, J. Bernardi, K. McKenna, O. Diwald, J. Mater. Sci. 50, 8153 (2015)

    Article  CAS  Google Scholar 

  9. M.A. Oturan, J.J. Aaron, Crit. Rev. Env. Sci. Tecnol. 44, 2577 (2014)

    Article  CAS  Google Scholar 

  10. J. Ge, Y. Zhang, Y.J. Heo, S.J. Park, Catalysts 9, 122 (2019)

    Article  CAS  Google Scholar 

  11. S.K. Sahoo, S. Padhiari, S.K. Biswal, B.B. Panda, G. Hota, Mater. Chem. Phys. 244, 122710 (2020)

    Article  CAS  Google Scholar 

  12. M.T. Uddin, Y. Nicolas, C. Olivier, T. Toupance, L. Servant, M.M. Müller, H.J. Kleebe, J. Ziegler, W. Jaegermann, Inorg. Chem. 51, 7764 (2012)

    Article  CAS  Google Scholar 

  13. A. Mills, S.L. Hunte, J. Photochem. Photobiol. A 108(1), 1 (1997)

    Article  CAS  Google Scholar 

  14. A. Hamrouni, N. Moussa, F. Parrino, A.D. Paola, A. Houas, L. Palmisano, J. Mol. Catal. A 390, 133 (2014)

    Article  CAS  Google Scholar 

  15. R. Lamba, A. Umar, S.K. Mehta, S.K. Kansal, J. Alloys Compd. 653, 327 (2015)

    Article  CAS  Google Scholar 

  16. D. Dash, N.R. Panda, D. Sahu, Appl. Surf. Sci. 494, 666 (2019)

    Article  CAS  Google Scholar 

  17. D. Dash, N.R. Panda, D. Sahu, Nano Exp. 2, 010007 (2021)

    Article  Google Scholar 

  18. A.M. Al-Hamdi, U. Rinner, M. Sillanpaa, Process Saf. Environ. Prot. 107, 190 (2017)

    Article  CAS  Google Scholar 

  19. S.Y. Lee, S.J. Park, J. Ind. Eng. Chem. 19(6), 1761 (2013)

    Article  CAS  Google Scholar 

  20. M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne, K. O’Shea, M.H. Entezari, D.D. Diony, Appl. Catal. B 125, 331 (2012)

    Article  CAS  Google Scholar 

  21. M. Thamima, S. Karuppuchamy, J. Mater. Sci.: Mater. Electron. 27, 458–465 (2016)

    CAS  Google Scholar 

  22. S. Vadivel, G. Rajarajan, J. Mater. Sci.: Mater. Electron. 26, 5863–5870 (2015)

    CAS  Google Scholar 

  23. S. Sathishkumar, M. Parthibavarman, V. Sharmila et al., J. Mater. Sci.: Mater. Electron. 28, 8192 (2017)

    CAS  Google Scholar 

  24. N.R. Panda, B.S. Acharya, Mater. Res. Express. 2, 015011 (2015)

    Article  CAS  Google Scholar 

  25. V. Kuzhalosai, B. Subash, A. Senthilraja, P. Dhatshanamurthi, M. Shanthi, Spectrochim. Acta A 115, 876 (2013)

    Article  CAS  Google Scholar 

  26. E.R. Carraway, A.H. Hoffman, M.R. Hoffmann, Environ. Sci. Technol. 28(5), 786 (1994)

    Article  CAS  Google Scholar 

  27. S. Rehman, R. Ullah, A.M. Butt, N.D. Gohar, J. Hazard. Mater. 170, 560 (2009)

    Article  CAS  Google Scholar 

  28. J. Mathew, A.S. Raj, D.D. Priya, D. Titus, E.J.J. Samuel, S.M. Roopan, Optik 219, 165282 (2020)

    Article  CAS  Google Scholar 

  29. N.M. Zalani, B.K. Kaleji, B. Mazinani, Mater. Technol. 35(5), 281 (2020)

    Article  CAS  Google Scholar 

  30. W. Li, D. Wu, Y. Yu, P. Zhang, J. Yuan, Y. Cao, Y. Cao, J. Xu, Physica E 58, 118 (2014)

    Article  CAS  Google Scholar 

  31. Y. Wang, S. Zhu, X. Chen, Y. Tang, Y. Jiang, Z. Peng, H. Wan, Appl. Surf. Sci. 307, 263 (2014)

    Article  CAS  Google Scholar 

  32. A. Hamrouni, H. Lachheb, A. Houas, Mater. Sci. Eng. B 178, 1371 (2013)

    Article  CAS  Google Scholar 

  33. A. Dodd, A. McKinley, M. Saunders, T. Tsuzuki, Nanotechnology 17, 692 (2006)

    Article  CAS  Google Scholar 

  34. J. Zhang, T. Chen, J. Yu et al., J. Mater. Sci.: Mater. Electron. 27, 10667 (2016)

    CAS  Google Scholar 

  35. W.A. Thompson, A. Olivo, D. Zanardo, G. Cruciani, F. Menegazzo, M. Signoretto, M.M. Maroto-Valer, RSC Adv. 9, 21660 (2019)

    Article  CAS  Google Scholar 

  36. K.M. Butt, M.A. Farrukh, I. Muneer, J. Mater. Sci.: Mater. Electron. 27, 8493 (2016)

    CAS  Google Scholar 

  37. Q. Zhang, X. Zhao, L. Duan, H. Shen, R. Liu, J. Photochem. Photobiol. A 392, 112156 (2020)

    Article  CAS  Google Scholar 

  38. N. Davari, M. Farhadian, A.R.S. Nazar, M. Homayoonfal, J. Environ. Chem. Eng. 5(6), 5707 (2017)

    Article  CAS  Google Scholar 

  39. M.T. Taghizadeh, F.N.B. Kheljan, M. Vatanparast, J. Mater. Sci. Mater.: Electron. 29, 978 (2018)

    Article  CAS  Google Scholar 

  40. M. Wang, J. Han, Y. Hu, R. Guo, Y. Yin, A.C.S. Appl, Mater. Interfaces 8, 29511 (2016)

    Article  CAS  Google Scholar 

  41. H.L. Xia, H.S. Zhuang, T. Zhang, D.C. Xiao, J. Env. Sci. 19, 1141 (2007)

    Article  CAS  Google Scholar 

  42. S. Selvinsimpson, S.E.G. Dhana Rani, A.G. Kumar, R. Rajaram, I.S. Lydia, Y. Chen, Environ. Res. 195, 787 (2021).

  43. M.T. Uddin, M.E. Hoque, M.C. Bhoumick, RSC Adv. 10, 23554 (2020)

    Article  CAS  Google Scholar 

  44. A.M. Ali, N.A. Ghazwani, H. Algarni, A.A. Ismail, Mater. Res. Exp. 6, 065026 (2019)

    Article  CAS  Google Scholar 

  45. N.C. Horti, M.D. Kamatagi, N.R. Patil, M.N. Wari, S.R. Inamdar, Optik 169, 314 (2018)

    Article  CAS  Google Scholar 

  46. F. Ahmed, N. Arshi, M.S. Anwar, R. Danish, B.H. Koo, RSC Adv. 4, 29249 (2014)

    Article  CAS  Google Scholar 

  47. S. Adhikari, D. Sarkar, G. Madras, RSC Adv. 4, 55807 (2014)

    Article  CAS  Google Scholar 

  48. R.K. Mishra, A. Kushwaha, P.P. Sahay, RSC Adv. 4, 3904 (2014)

    Article  CAS  Google Scholar 

  49. K. Asokan, J.Y. Park, S.W. Choi, S.S. Kim, Nanoscale Res. Lett. 5, 747 (2010)

    Article  CAS  Google Scholar 

  50. C.S. Chiou, J.L. Shie, C.Y. Chang, C.C. Liu, C.T. Chang, J. Hazard. Mater. 137, 1123 (2006)

    Article  CAS  Google Scholar 

  51. J. Liqiang, Q. Yichun, W. Baiqi, L. Shudan, J. Baojiang, Y. Libin, F. Wei, F. Honggang, S. Jiazhong, Sol. Energy. Mater. Sol. Cells. 90, 1773 (2006)

    Article  CAS  Google Scholar 

  52. A.M. Al-Hamdi, M. Sillanpää, T. Bora, J. Dutta, Appl. Surf. Sci. 370, 229 (2016)

    Article  CAS  Google Scholar 

  53. N. Daneshvar, D. Salari, A.R. Khataee, J. Photochem, Photobiol. A 157, 111 (2003)

    Article  CAS  Google Scholar 

  54. R.J. Davis, J.L. Gainer, G.O. Neal, I.W. Wu, Water Environ. Res. 66, 50 (1994)

    Article  CAS  Google Scholar 

  55. M. Zhang, T. An, X. Hu, C. Wang, G. Sheng, J. Fu, Appl. Catal. A 260, 215 (2004)

    Article  CAS  Google Scholar 

  56. J. Wang, Z. Jiang, Z. Zhang, Y. Xie, X. Wang, Z. Xing, X. Rui, X. Zhang, Ultrason. Sonochem. 15(5), 768 (2008)

    Article  CAS  Google Scholar 

  57. L.A. Chanu, W.J. Singh, K.J. Singh, K.N. Devi, Results Phys. 12, 1230 (2019)

    Article  Google Scholar 

  58. C.-H. Weng, Y.-F. Pan, J. Hazard. Mater. 144, 355 (2007)

    Article  CAS  Google Scholar 

  59. P. Pascariu. C. Cojocaru, N. Olaru, A. Airinei, Phys. Status Solidi 256, 1800474 (2019).

  60. B.F. Minaev, Russ. Chem. Rev. 76(11), 1059 (2007)

    Article  CAS  Google Scholar 

  61. R. Nagaraja, N. Kottam, C.R. Girija, B.M. Nagabhushana, Powder Technol. 215–216, 91 (2012)

    Article  CAS  Google Scholar 

  62. N. Tripathy, R. Ahmad, H. Kuk, Y.-B. Hahn, G. Khang, Ceram. Int. 42(8), 9519 (2016)

    Article  CAS  Google Scholar 

  63. S.-Y. Pung, W.-P. Lee, A. Aziz, Int. J. Inorg. Chem. 608183, 1 (2012)

    Google Scholar 

  64. J. Lin, Z. Luo, J. Liu, P. Li, Mater. Sci. Semicond. Process. 87, 24 (2018)

    Article  CAS  Google Scholar 

  65. W. Kohn, A.D. Becke, R.G. Parr, J. Phys. Chem. 100, 12974 (1996)

    Article  CAS  Google Scholar 

  66. G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996)

    Article  CAS  Google Scholar 

  67. J.P. Perdew, K. Burke, Phys. Rev. B 54, 16533 (1996)

    Article  CAS  Google Scholar 

  68. P.E. Blochl, C.J. Forst, J. Schimpl, Bull. Mater. Sci. 26, 33 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author (DS) is thankful to Prof. Supriya Pattanaik, VC, CTUM and Prof. Dipankar Bhattacharyay, Pro VC (R & L) for their valuable suggestions and support in completion of this work.

Funding

No funding was received for this work.

Author information

Authors and Affiliations

Authors

Contributions

AP: conceptualization, investigation, methodology, data acquisition, formal analysis, writing and editing original draft. NRP: conceptualization, supervision, validation, investigation, writing, review and editing of manuscript. MRS: theoretical analysis, writing, review and editing of manuscript. DS: conceptualization, supervision, validation, investigation, writing, review and editing of manuscript.

Corresponding author

Correspondence to Dojalisa Sahu.

Ethics declarations

Conflict of interest

There exist no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palai, A., Panda, N.R., Sahoo, M.R. et al. Study on the electronic band structure of ZnO–SnO2 heterostructured nanocomposites with mechanistic investigation on the enhanced photoluminescence and photocatalytic properties. J Mater Sci: Mater Electron 33, 9599–9615 (2022). https://doi.org/10.1007/s10854-021-07583-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07583-x

Navigation