Skip to main content

Advertisement

Log in

Surface photovoltage measurement of PM10 atmospheric aerosols collected over SRMIST-Kattankulathur campus (12.81° N & 80.03° E): a step towards utilization of atmospheric aerosols in optoelectronic applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, we have measured the surface photovoltage of airborne particulate matter of size up to 10 microns (PM10) through scanning Kelvin probe (SKP) system at room temperature. The aerosol samples were collected using a dust respirable PM10 sampler located in SRM IST campus (12.81° N and 80.03° E) during September-2018 (Sep-2018) and November-2018 (Nov-2018). The morphology of the collected aerosol was characterized through HR-SEM. The chemical composition of the aerosol was confirmed by energy dispersive X-ray (EDX) analysis. The EDX results confirmed the presence of more oxygen and absence of carbon content in the aerosol collected during Nov-2018. The vibration modes of identified chemical compositions were confirmed by Raman spectrum. Finally, the contact potential difference of both samples was measured by SKP with respect to visible light exposure. Interestingly, aerosol collected during Nov-2018 have better visible light response compared with Sep-2018 sample. This is probably due to the possibility of metal oxides formation without carbon contamination during Nov-2018. Meteorologically inferring that these pollutants have been transported from the Arabian Sea and continental India in most of the days during September- and November-2018, respectively. These results pave the way to use the metal oxides rich aerosol collected for particular month can be utilized toward optoelectronic and gas sensor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. Aruna, T.V. Lakshmi Kumar, B.V. Krishna Murthy, S.S. Babu, M.V. Ratnam, D.N. Rao, Short wave aerosol radiative forcing estimates over a semi urban coastal environment in south-east India and validation with surface flux measurements. Atmos. Environ. 125, 418–428 (2016). https://doi.org/10.1016/j.atmosenv.2015.08.085

    Article  CAS  Google Scholar 

  2. G. Purnadurga, T.V. Lakshmi Kumar, K. Koteswara Rao, M. Rajasekhar, M.S. Narayanan, Investigation of temperature changes over India in association with meteorological parameters in a warming climate. Int. J. Climatol. 38, 867–877 (2018). https://doi.org/10.1002/joc.5216

    Article  Google Scholar 

  3. T.F. Stocker et al., IPCC-2013: climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, 1535. (2013). https://doi.org/10.1017/CBO9781107415324

  4. V. Ramanathan, P.J. Crutzen, J.T. Kiehl, D. Rosenfeld, Atmosphere: aerosols, climate, and the hydrological cycle. Science 294, 2119–2124 (2001). https://doi.org/10.1126/science.1064034

    Article  CAS  Google Scholar 

  5. R. Agnihotri, T.K. Mandal, S.G. Karapurkar, M. Naja, R. Gadi, Y.N. Ahammmed, A. Kumar, T. Saud, M. Saxena, Stable carbon and nitrogen isotopic composition of bulk aerosols over India and northern Indian Ocean. Atmos. Environ. 45, 2828–2835 (2011). https://doi.org/10.1016/j.atmosenv.2011.03.003

    Article  CAS  Google Scholar 

  6. T. Novakov, M.O. Andreae, R. Gabriel, T.W. Kirchstetter, O.L. Mayol-Bracero, V. Ramanathan, Origin of carbonaceous aerosols over the tropical Indian Ocean: biomass burning or fossil fuels? Geophys. Res. Lett. 27, 4061–4064 (2000). https://doi.org/10.1029/2000GL011759

    Article  CAS  Google Scholar 

  7. K. Aruna, T.V.L. Kumar, D.N. Rao, B.V.K. Murthy, S.S. Babu, K.K. Moorthy, Black carbon aerosols in a tropical semi-urban coastal environment: effects of boundary layer dynamics and long range transport. J. Atmos. Sol. Terr. Phys. 104, 116–125 (2013). https://doi.org/10.1016/j.jastp.2013.08.020

    Article  CAS  Google Scholar 

  8. C.A. Pope, D.W. Dockery, Health effects of fine particulate air pollution: lines that connect. J. Air Waste Manag. Assoc. 56, 709–742 (2006). https://doi.org/10.1080/10473289.2006.10464485

    Article  CAS  Google Scholar 

  9. K. Aruna, T.V. Lakshmi Kumar, D.N. Rao, B.V. Krishna Murthy, S.S. Babu, K. Krishnamoorthy, Scattering and absorption characteristics of atmospheric aerosols over a semi-urban coastal environment. J. Atmos. Sol. Terr. Phys. 119, 211–222 (2014). https://doi.org/10.1016/j.jastp.2014.08.009

    Article  CAS  Google Scholar 

  10. D.C. Doughty, S.C. Hill, Automated aerosol Raman spectrometer for semi-continuous sampling of atmospheric aerosol. J. Quant. Spectrosc. Radiat. Transf. 188, 103–117 (2017). https://doi.org/10.1016/j.jqsrt.2016.06.042

    Article  CAS  Google Scholar 

  11. A.P. Ault, D. Zhao, C.J. Ebben, M.J. Tauber, F.M. Geiger, K.A. Prather, V.H. Grassian, Raman microspectroscopy and vibrational sum frequency generation spectroscopy as probes of the bulk and surface compositions of size-resolved sea spray aerosol particles. Phys. Chem. Chem. Phys. 15, 6206–6214 (2013). https://doi.org/10.1039/c3cp43899f

    Article  CAS  Google Scholar 

  12. D. Chidambaram, G. Vattikondala, G. Marappan, Y. Sivalingam, Indium content dependent VOCs interactions in monolithic InGaN/GaN multi quantum well structures grown by MOCVD. Mater. Sci. Semicond. Process. 104, 104694 (2019). https://doi.org/10.1016/j.mssp.2019.104694

    Article  CAS  Google Scholar 

  13. D. Davis, G. Marappan, Y. Sivalingam, B.B. Panigrahi, S. Singh, Tribological behavior of NiMoAl-based self-lubricating composites. ACS Omega 5, 14669–14678 (2020). https://doi.org/10.1021/acsomega.0c01409

    Article  CAS  Google Scholar 

  14. G.K. Dutta, S. Kasthuri, G. Marappan, S.V. Jayaraman, Y. Sivalingam, C. Di Natale, V. Nutalapati, Aggregation behavior in naphthalene-appended diketopyrrolopyrrole derivatives and its gas adsorption impact on surface potential. J. Mater. Chem. C 7, 9954–9965 (2019). https://doi.org/10.1039/c9tc02226k

    Article  CAS  Google Scholar 

  15. M. Elakia, M. Gobinath, Y. Sivalingam, E. Palani, S. Ghosh, V. Nutalapati, V.J. Surya, Investigation on visible light assisted gas sensing ability of multi-walled carbon nanotubes coated with pyrene based organic molecules. Physica E 124, 114232 (2020). https://doi.org/10.1016/j.physe.2020.114232

    Article  CAS  Google Scholar 

  16. K. Guruprasad, G. Marappan, S. Elangovan, S. Velappa Jayaraman, K. Kamala Bharathi, G. Venugopal, C. Di Natale, Y. Sivalingam, Electrical transport properties and impedance analysis of Au/ZnO nanorods/ITO heterojunction device. Nano Express 1, 030020 (2020). https://doi.org/10.1088/2632-959x/abc6f8

    Article  Google Scholar 

  17. G. Marappan, K. Pushparaj, Y. Sivalingam, V. Nutalapati, V.J. Surya, Naphthalene appended diketopyrrolopyrrole derivatives functionalized on ZnO nanostructures: an investigation on gas adsorption induced surface potential changes at room temperature. Mater. Lett. 304, 130724 (2021). https://doi.org/10.1016/j.matlet.2021.130724

    Article  CAS  Google Scholar 

  18. M.A. Williams, T.V.L. Kumar, D.N. Rao, Characterizing black carbon aerosols in relation to atmospheric boundary layer height during wet removal processes over a semi urban location. J. Atmos. Sol. Terr. Phys. 182, 165–176 (2018). https://doi.org/10.1016/j.jastp.2018.11.018

    Article  CAS  Google Scholar 

  19. A. Singh, M. Kumar Thakur, P. Geesupalli, N. Rajesh Anandan, L. Kumar, S. Sharma, P. Kumar, Scaling of heavy rainy days with upper air profiles over Chennai during northeast monsoon. Indian J. Radio Space Phys. 49, 153–161 (2020)

    Google Scholar 

Download references

Acknowledgements

Y.S. thanks the Department of Science and Technology (DST)—Science and Engineering Research Board (SERB), Government of India for financial support (ECR/2017/001218).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuvaraj Sivalingam or Velappa Jayaraman Surya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marappan, G., Reji, R.P., Mohan, V. et al. Surface photovoltage measurement of PM10 atmospheric aerosols collected over SRMIST-Kattankulathur campus (12.81° N & 80.03° E): a step towards utilization of atmospheric aerosols in optoelectronic applications. J Mater Sci: Mater Electron 33, 9590–9598 (2022). https://doi.org/10.1007/s10854-021-07582-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07582-y

Navigation