Skip to main content
Log in

Ferromagnetic resonance properties of multilayer FeGaB/Ta/FeGaB structure

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this report, magnetic static and dynamic properties have been studied on sputtered Ta (10 nm) /FeGaB (10 ~ 30 nm)/Ta (5 nm) /FeGaB (15 nm) /Ta (3 nm) film stack. The surface characterization suggests good quality thin films with a low roughness value. The magnetization study suggests that the magnetic coercive field has increased as long as changing the bottom FeGaB layer thickness. The dynamic properties of multilayer thin films stack provide the inhomogeneous linewidth (∆H0), the damping factor (α) and other parameters. The thickness dependence of damping factor provides the bulk damping used to calculate the spin-mixing conductance g↑↓, which shows a larger value than single layer ferromagnetic stack, and also gets enhanced at the lower temperature of 100 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C. Herring, C. Kittel, On the theory of spin waves in ferromagnetic media. Phys. Rev. 81(5), 869–880 (1951)

    Article  Google Scholar 

  2. S. Mangin, M. Gottwald, C.H. Lambert, D. Steil, V. Uhlíř, L. Pang, M. Hehn, S. Alebrand, M. Cinchetti, G. Malinowski, Y. Fainman, M. Aeschlimann, E.E. Fullerton, Engineered materials for all-optical helicity-dependent magnetic switching. Nat. Mater. 13(3), 286–292 (2014)

    Article  CAS  Google Scholar 

  3. S.S.P. Parkin, Spintronic materials and devices: past, present and future!, IEDM technical digest. IEEE Int. Electron Devices Meeting 2004, 903–906 (2004)

    Google Scholar 

  4. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnár, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Spintronics: a spin-based electronics vision for the future. Science 294(5546), 1488–1495 (2001)

    Article  CAS  Google Scholar 

  5. I. Žutić, J. Fabian, S. Das Sarma, Spintronics: fundamentals and applications. Rev. of Mod. Phys. 76(2), 323–410 (2004)

    Article  Google Scholar 

  6. Y. Tserkovnyak, A. Brataas, G.E.W. Bauer, B.I. Halperin, Nonlocal magnetization dynamics in ferromagnetic heterostructures. Rev. Mod. Phys. 77(4), 1375–1421 (2005)

    Article  CAS  Google Scholar 

  7. K. Kondou, H. Sukegawa, S. Mitani, K. Tsukagoshi, S. Kasai, Evaluation of spin hall angle and spin diffusion length by using spin current-induced ferromagnetic resonance. Appl. Phys. Express 5(7), e073002 (2012)

    Article  Google Scholar 

  8. S. Mangin, Y. Henry, D. Ravelosona, J.A. Katine, E.E. Fullerton, Reducing the critical current for spin-transfer switching of perpendicularly magnetized nanomagnets. Appl. Phys. Lett. 94(1), e012502 (2009)

    Article  Google Scholar 

  9. D. Tian, Y. Li, D. Qu, S.Y. Huang, X. Jin, C.L. Chien, Manipulation of pure spin current in ferromagnetic metals independent of magnetization. Phys. Rev. B 94(2), e020403 (2016)

    Article  Google Scholar 

  10. J.A. Katine, F.J. Albert, R.A. Buhrman, E.B. Myers, D.C. Ralph, Current-driven magnetization reversal and spin-wave excitations in Co $/$Cu $/$Co pillars. Phys. Rev. Lett. 84(14), 3149–3152 (2000)

    Article  CAS  Google Scholar 

  11. C.Y. Guo, C.H. Wan, M.K. Zhao, H. Wu, C. Fang, Z.R. Yan, J.F. Feng, H.F. Liu, X.F. Han, Spin-orbit torque switching in perpendicular Y3Fe5O12/Pt bilayer. Appl. Phys. Lett. 114(19), e192409 (2019)

    Article  Google Scholar 

  12. S. Klingler, V. Amin, S. Geprägs, K. Ganzhorn, H. Maier-Flaig, M. Althammer, H. Huebl, R. Gross, R.D. McMichael, M.D. Stiles, S.T.B. Goennenwein, M. Weiler, Spin-torque excitation of perpendicular standing spin waves in coupled $\mathrm{YIG}/\mathrm{Co}$ heterostructures. Phys. Rev. Lett. 120(12), e127201 (2018)

    Article  Google Scholar 

  13. A. Bahadur, A. Saeed, S. Iqbal, M. Shoaib, I. Ahmad, U.R. Rahman, MS; Bashir, MI; Yaseen, M., Hussain, Morphological and magnetic properties of BaFe12O19 nanoferrite: a promising microwave absorbing material. Ceram. Int 43, 7346–7350 (2017)

    Article  CAS  Google Scholar 

  14. Z. Feng, J. Hu, L. Sun, B. You, D. Wu, J. Du, W. Zhang, A. Hu, Y. Yang, D.M. Tang, B.S. Zhang, H.F. Ding, Spin Hall angle quantification from spin pumping and microwave photoresistance. Phys. Rev. B 85(21), e214423 (2012)

    Article  Google Scholar 

  15. Y. Tserkovnyak, A. Brataas, G.E.W. Bauer, Spin pumping and magnetization dynamics in metallic multilayers. Phys. Rev. B 66(22), e224403 (2002)

    Article  Google Scholar 

  16. E. Montoya, P. Omelchenko, C. Coutts, N.R. Lee-Hone, R. Hübner, D. Broun, B. Heinrich, E. Girt, Spin transport in tantalum studied using magnetic single and double layers. Phys. Rev. B 94(5), e054416 (2016)

    Article  Google Scholar 

  17. A. Brataas, Y.V. Nazarov, G.E.W. Bauer, Finite-element theory of transport in ferromagnet-normal metal systems. Phys. Rev. Lett. 84(11), 2481–2484 (2000)

    Article  CAS  Google Scholar 

  18. B.T. Jonker, Y.D. Park, B.R. Bennett, H.D. Cheong, G. Kioseoglou, A. Petrou, Robust electrical spin injection into a semiconductor heterostructure. Phys. Rev. B 62(12), 8180–8183 (2000)

    Article  CAS  Google Scholar 

  19. H.J. Zhu, M. Ramsteiner, H. Kostial, M. Wassermeier, H.P. Schönherr, K.H. Ploog, Room-temperature spin injection from Fe into GaAs. Phys. Rev. Lett. 87(1), e016601 (2001)

    Article  Google Scholar 

  20. K. Omri, S. Gouadria 2021 Dielectric investigation and effect of low copper doping on optical and morphology properties of ZO-Cu nanoparticles. J. Mater. Sci.: Mater. in Electron. 1–11

  21. T. Kimura, Y. Otani, T. Sato, S. Takahashi, S. Maekawa, Room-temperature reversible spin hall effect. Phys. Rev. Lett. 98(15), e156601 (2007)

    Article  Google Scholar 

  22. S. Zhang, Spin hall effect in the presence of spin diffusion. Phys. Rev. Lett. 85(2), 393–396 (2000)

    Article  CAS  Google Scholar 

  23. A. Sharma, A.A. Tulapurkar, B. Muralidharan, Resonant spin-Transfer-Torque Nano-Oscillators. Phys. Rev. Appl. 8(6), e064014 (2017)

    Article  Google Scholar 

  24. C. Sanid, S. Murugesh, Synchronization and chaos in spin-transfer-torque nano-oscillators coupled via a high-speed operational amplifier. J. Phys. D: Appl. Phys. 47(6), e065005 (2014)

    Article  Google Scholar 

  25. K. Omri, A. Alyamani, L. El Mir, Surface morphology, microstructure and electrical properties of Ca-doped ZnO thin films. J. Mater. Sci.: Mater. Electron. 30(17), 16606–16612 (2019)

    CAS  Google Scholar 

  26. B. Heinrich, Y. Tserkovnyak, G. Woltersdorf, A. Brataas, R. Urban, G.E.W. Bauer, Dynamic exchange coupling in magnetic bilayers. Phys. Rev. Lett. 90(18), e187601 (2003)

    Article  Google Scholar 

  27. K. Ali, A. Sarfraz, I.M. Mirza, A. Bahadur, S. Iqbal, A. Ul Haq 2015 Preparation of superparamagnetic maghemite (γ-Fe2O3) nanoparticles by wet chemical route and investigation of their magnetic and dielectric properties. Current Appl. Phys. 5(8): 925–929

  28. R. Salikhov, R. Abrudan, F. Brüssing, S. Buschhorn, M. Ewerlin, D. Mishra, F. Radu, I. Garifullin, H. Zabel, Precessional dynamics and damping in Co/Cu/Py spin valves. Appl. Phys. Lett. 99, e092509 (2011)

    Article  Google Scholar 

  29. K. Omri, A. Bettaibi, K. Khirouni, L. El Mir, The optoelectronic properties and role of Cu concentration on the structural and electrical properties of Cu doped ZnO nanoparticles. Physica B 537, 167–175 (2018)

    Article  CAS  Google Scholar 

  30. K. Ali, A. Bahadur, A. Jabbar, S. Iqbal, I. Ahmad, M.I. Bashir, Synthesis, structural, dielectric and magnetic properties of CuFe2O4/MnO2 nanocomposites. J. Magn. Magn. Mater. 434, 30–36 (2017)

    Article  CAS  Google Scholar 

  31. R. Salikhov, R. Abrudan, F. Brüssing, K. Gross, C. Luo, K. Westerholt, H. Zabel, F. Radu, I.A. Garifullin, Configurational dependence of the magnetization dynamics in spin valve systems: Influence of spin pumping and domain wall induced coupling. Phys. Rev. B 86(14), e144422 (2012)

    Article  Google Scholar 

  32. Y. Li, W. Cao, W.E. Bailey, Characterization of spin relaxation anisotropy in Co using spin pumping. Phys. Rev. B 94(17), e174439 (2016)

    Article  Google Scholar 

  33. K. Omri, I. Najeh, L. El Mir, Influence of annealing temperature on the microstructure and dielectric properties of ZnO nanoparticles. Ceram. Int. 42(7), 8940–8948 (2016)

    Article  CAS  Google Scholar 

  34. A.A. Baker, A.I. Figueroa, C.J. Love, S.A. Cavill, T. Hesjedal, G. van der Laan, Anisotropic absorption of pure spin currents. Phys. Rev. Lett. 116(4), e047201 (2016)

    Article  Google Scholar 

  35. H. Yang, Y. Li, W.E. Bailey, Large spin pumping effect in antisymmetric precession of Ni79Fe21/Ru/Ni79Fe21. Appl. Phys. Lett. 108(24), e242404 (2016)

    Article  Google Scholar 

  36. A. Bahadur, A. Saeed, M. Shoaib, S. Iqbal, M.I. Bashir, M. Waqas, M.N. Hussain, N. Abbas, Eco-friendly synthesis of magnetite (Fe3O4) nanoparticles with tunable size: dielectric, magnetic, thermal and optical studies. Mater. Chem. Phys. 198, 229–235 (2017)

    Article  CAS  Google Scholar 

  37. K. Ali, J. Iqbal, T. Jan, I. Ahmad, D. Wan, A. Bahadur, S. Iqbal, Synthesis of CuFe2O4-ZnO nanocomposites with enhanced electromagnetic wave absorption properties. J. Alloy. Compd. 705, 559–565 (2017)

    Article  CAS  Google Scholar 

  38. N. Srisukhumbowornchai, S. Guruswamy, Large magnetostriction in directionally solidified FeGa and FeGaAl alloys. J. Appl. Phys. 90(11), 5680–5688 (2001)

    Article  CAS  Google Scholar 

  39. J. Lou, R. Insignares, Z. Cai, K.S. Ziemer, M. Liu, N.X. Sun, Soft magnetism, magnetostriction, and microwave properties of FeGaB thin films. Appl. Phys. Lett. 91(18), e182504 (2007)

    Article  Google Scholar 

  40. T. Wu, A. Bur, H.K. Kim, P. Zhao, G.P. Carman 2011 Giant electrical control of magnetic anisotropy in magnetoelectric heterostructures using (011) PMN-PT single crystal, Behavior and Mechanics of Multifunctional Materials and Composites 2011, International Society for Optics and Photonics p. 797818

  41. T. Wu, A. Bur, K. Wong, J. Leon Hockel, C.-J. Hsu, H.K. Kim, K.L. Wang, G.P. Carman 2011 Electric-poling-induced magnetic anisotropy and electric-field-induced magnetization reorientation in magnetoelectric Ni/(011)[Pb (Mg1/3Nb2/3) O3](1-x)-[PbTiO3] x heterostructure. J. Appl. Phys. 109(7): e07D732

  42. A. Kaidatzis, D.B. Gopman, C. Bran, J.M. García-Martín, M. Vázquez, D. Niarchos, Investigation of split CoFeB/Ta/CoFeB/MgO stacks for magnetic memories applications. J. Magn. Magn. Mater. 473, 355–359 (2019)

    Article  CAS  Google Scholar 

  43. K. Yadagiri, T. Wu, The thickness of buffer layer and temperature dependent magneto dynamic properties of Ta/FeGaB/Ta tri-layer. J. Magn. Magn. Mater. 515, e167277 (2020)

    Article  Google Scholar 

  44. K. Yadagiri, Y. Wang, T. Wu, Temperature-dependent exchange stiffness of spin-wave in Ta/CoFeB by ferromagnetic resonance spectroscopy. IEEE Trans. Magn. 57(1), 1–7 (2021)

    Article  Google Scholar 

  45. C. Kittel, Interpretation of anomalous larmor frequencies in ferromagnetic resonance experiment. Phys. Rev. 71(4), 270–271 (1947)

    Article  Google Scholar 

  46. J.M. Shaw, H.T. Nembach, T.J. Silva, C.T. Boone, Precise determination of the spectroscopic g-factor by use of broadband ferromagnetic resonance spectroscopy. J. Appl. Phys. 114(24), e243906 (2013)

    Article  Google Scholar 

  47. H. Lee, L. Wen, M. Pathak, P. Janssen, P. LeClair, C. Alexander, C.K.A. Mewes, T. Mewes, Spin pumping in Co56Fe24B20multilayer systems. J. Phys. D: Appl. Phys. 41(21), e215001 (2008)

    Article  Google Scholar 

  48. M. Tokaç, S.A. Bunyaev, G.N. Kakazei, D.S. Schmool, D. Atkinson, A.T. Hindmarch, Interfacial structure dependent spin mixing conductance in cobalt thin films. Phys. Rev. Lett. 115(5), e056601 (2015)

    Article  Google Scholar 

  49. E. Barati, M. Cinal, D.M. Edwards, A. Umerski, Gilbert damping in magnetic layered systems. Phys. Rev. B 90(1), e014420 (2014)

    Article  Google Scholar 

  50. Y. Liu, Z. Yuan, R.J.H. Wesselink, A.A. Starikov, P.J. Kelly, Interface Enhancement of gilbert damping from first principles. Phys. Rev. Lett. 113(20), e207202 (2014)

    Article  Google Scholar 

  51. J.M.L. Beaujour, J.H. Lee, A.D. Kent, K. Krycka, C.C. Kao, Magnetization damping in ultrathin polycrystalline Co films: evidence for nonlocal effects. Phys. Rev. B 74(21), e214405 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of Shanghai (19ZR1477000) and National Natural Science Foundation of China (61874073).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Yadagiri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadagiri, K., Wang, Y., Wu, P. et al. Ferromagnetic resonance properties of multilayer FeGaB/Ta/FeGaB structure. J Mater Sci: Mater Electron 33, 3870–3879 (2022). https://doi.org/10.1007/s10854-021-07577-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07577-9

Navigation