Skip to main content
Log in

Optical and dielectric properties of potassium-doped tin selenide polycrystals

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In our current study, we have investigated the effect of potassium doping on AC conductivity and the dielectric properties of tin selenide (SnSe). Potassium-doped SnSe (KxSn1-xSe with x = 0–20 mol%) polycrystals were synthesized via hydrothermal method. The phase of the synthesized samples was confirmed to be single phase with orthorhombic structure as obtained by X-ray diffraction. The average crystallite size for all the KxSn1-xSe samples was calculated using the Debye–Scherrer formula and they were found to be decreased as potassium (K) concentration increased. Scanning electron microscope revealed plate-like morphology for all KxSn1-xSe samples. Transmission electron microscope studies at high resolution showed plate-like morphology which is connected with small nanorods for the K0.20Sn0.80Se. Optical studies were carried out using UV–Vis–NIR diffuse reflectance spectroscopy. The bandgap values were found to be decreased as K concentration is increased. Temperature-dependent dielectric studies were studied for all KxSn1-xSe samples. Correlated barrier hopping is responsible for the transport of charge carriers in the conduction mechanism. Electrical modulus studies reveal a non-Debye-type dielectric relaxation phenomenon. The results of dielectric studies specify the application of K-doped SnSe in frequency related and capacitive storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The datasets generated in the current study are available from the corresponding author on reasonable request.

References

  1. M. Kumar, S. Rani, Y. Singh, K.S. Gour, V.N. Singh, RSC Adv. 11, 6477 (2021)

    Article  CAS  Google Scholar 

  2. W. Shi, M. Gao, J. Wei, J. Gao, C. Fan, E. Ashalley, H. Li, Z. Wang, Adv. Sci. (2018). https://doi.org/10.1002/advs.201700602

    Article  Google Scholar 

  3. Y. Li, F. Li, J. Dong, Z. Ge, F. Kang, J. He, H. Du, B. Li, J.F. Li, J. Mater. Chem. C 4, 2047 (2016)

    Article  CAS  Google Scholar 

  4. L. Das, A. Guleria, S. Adhikari, RSC Adv. 5, 61390 (2015)

    Article  CAS  Google Scholar 

  5. C.H. Hu, M.H. Chiang, M.S. Hsieh, W.T. Lin, Y.S. Fu, T.F. Guo, CrystEngComm 16, 1786 (2014)

    Article  CAS  Google Scholar 

  6. L. Ling, Q. Zhang, L. Zhu, C.F. Wang, S. Chen, RSC Adv. 5, 2155 (2015)

    Article  CAS  Google Scholar 

  7. T. Arokiya Mary, A.C. Fernandez, P. Sakthivel, J.G.M. Jesudurai, J. Mater. Sci. 27, 11041 (2016)

    CAS  Google Scholar 

  8. X. Shi, X. Tao, J. Zou, Z. Chen, Adv. Sci. 7, 1902923 (2020)

    Article  CAS  Google Scholar 

  9. S. Sagadevan, K. Pal, E. Hoque, Z.Z. Chowdhury, J. Mater. Sci. 28, 10902 (2017)

    CAS  Google Scholar 

  10. A.A. Azab, A.A. Ward, G.M. Mahmoud, E.M. El-Hanafy, H. El-Zahed, F.S. Terra, J. Semicond. 39, 123006 (2018)

    Article  CAS  Google Scholar 

  11. A. Sultan, M. Ahmad, Z. Imran, S.S. Batool, K. Rasool, S. Hassan, M.A. Rafiq, Phys. B (2021). https://doi.org/10.1016/j.physb.2020.412571

    Article  Google Scholar 

  12. G.K. Solanki, N.N. Gosai, K.D. Patel, Res. J. Chem. Sci. 5, 1 (2015)

    CAS  Google Scholar 

  13. S. Sakrani, Z. Othaman, K. Deraman, Y. Wahab, J. Fiz. UTM 3, 99 (2008)

    Google Scholar 

  14. P.M.P. Suguna, D. Mangalamj, S.K. Narayandass, Phys. Status Sol. 155, 405 (1996)

    Article  CAS  Google Scholar 

  15. G.K. Solanki, K.D. Patel, N.N. Gosai, B.P. Rahul, Res. J. Chem. Sci. 2, 43 (2012)

    CAS  Google Scholar 

  16. M. Nerella, M.B. Suresh, S. Bathulapalli, J. Mater. Sci. 32, 4347 (2021)

    CAS  Google Scholar 

  17. C.C. Lin, D. Ginting, G. Kim, K. Ahn, J.S. Rhyee, Curr. Appl. Phys. 18, 1534 (2018)

    Article  Google Scholar 

  18. Y.X. Chen, Z.H. Ge, M. Yin, D. Feng, X.Q. Huang, W. Zhao, J. He, Adv. Funct. Mater. 26, 6836 (2016)

    Article  CAS  Google Scholar 

  19. Z.H. Ge, D. Song, X. Chong, F. Zheng, L. Jin, X. Qian, L. Zheng, R.E. Dunin-Borkowski, P. Qin, J. Feng, L.D. Zhao, J. Am. Chem. Soc. 139, 9714 (2017)

    Article  CAS  Google Scholar 

  20. K. Zhang, K. Deng, J. Li, H. Zhang, W. Yao, J. Denlinger, Y. Wu, W. Duan, S. Zhou, Phys. Rev. Mater. (2018). https://doi.org/10.1103/PhysRevMaterials.2.054603

    Article  Google Scholar 

  21. T.R. Wei, G. Tan, X. Zhang, C.F. Wu, J.F. Li, V.P. Dravid, G.J. Snyder, M.G. Kanatzidis, J. Am. Chem. Soc. 138, 8875 (2016)

    Article  CAS  Google Scholar 

  22. B. Pejjai, V.R. Minnam Reddy, K. Seku, M.R. Pallavolu, C. Park, New J. Chem. 42, 4843 (2018)

    Article  CAS  Google Scholar 

  23. A.Y. Kuznetsov, R. MacHado, L.S. Gomes, C.A. Achete, V. Swamy, B.C. Muddle, V. Prakapenka, Appl. Phys. Lett. 94, 2 (2009)

    Article  Google Scholar 

  24. R. Rajesh, S. John Ethilton, K. Ramachandran, K. Ramesh Kumar, S.S. Vadla, I.B. Shameem Banu, Appl. Phys. A 124, 1 (2018)

    Article  CAS  Google Scholar 

  25. F.K. Butt, M. Mirza, C. Cao, F. Idrees, M. Tahir, M. Safdar, Z. Ali, M. Tanveer, I. Aslam, CrystEngComm 16, 3470 (2014)

    Article  CAS  Google Scholar 

  26. G. Han, S.R. Popuri, H.F. Greer, J.W.G. Bos, W. Zhou, A.R. Knox, A. Montecucco, J. Siviter, E.A. Man, M. MacAuley, D.J. Paul, W.G. Li, M.C. Paul, M. Gao, T. Sweet, R. Freer, F. Azough, H. Baig, N. Sellami, T.K. Mallick, D.H. Gregory, Angew. Chem. Int. Ed. 55, 6433 (2016)

    Article  CAS  Google Scholar 

  27. D. Feng, Z.H. Ge, D. Wu, Y.X. Chen, T. Wu, J. Li, J. He, Phys. Chem. Chem. Phys. 18, 31821 (2016)

    Article  CAS  Google Scholar 

  28. A. Escobedo-Morales, I.I. Ruiz-López, M.D.L. Ruiz-Peralta, L. Tepech-Carrillo, M. Sánchez-Cantú, J.E. Moreno-Orea, Heliyon 5, e01505 (2019)

    Article  CAS  Google Scholar 

  29. S. Suresh, C. Arunseshan, Appl. Nanosci. 4, 179 (2014)

    Article  CAS  Google Scholar 

  30. M. Ahmad, M.A. Rafiq, M.M. Hasan, M. Ahmad, M.A. Rafiq, M.M. Hasan, J. Appl. Phys. 13, 133702 (2013)

    Article  Google Scholar 

  31. M.P. Rajeeva, C.S. Naveen, A.R. Lamani, H.S. Jayanna, J. Mater. Sci. 28, 16348 (2017)

    CAS  Google Scholar 

  32. S. Sagadevan, J. Podder, Mater. Res. 19, 420 (2016)

    Article  CAS  Google Scholar 

  33. F.A. Mir, K.M. Batoo, I. Chatterjee, G.M. Bhat, J. Mater. Sci. 25, 1564 (2014)

    CAS  Google Scholar 

  34. K. Khurana, N. Jaggi, J. Mater. Sci. 31, 10334 (2020)

    CAS  Google Scholar 

  35. B. Parveen, M. Hassan, S. Atiq, S. Riaz, S. Naseem, S. Zaman, J. Mater. Sci. 52, 7369 (2017)

    Article  CAS  Google Scholar 

  36. S.R. Elliott, Philos. Mag. 36, 1291 (1977)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge "The Director, ARCI, Hyderabad" for the help in dielectric measurements. The authors also acknowledge the TEM Facility funded by a TPF Nanomission, GOI project at Center for Nano and Soft Matter Sciences, Bengaluru.

Author information

Authors and Affiliations

Authors

Contributions

MN performed conceptualization, data curation, formal analysis, investigation, methodology, validation, visualization, writing and preparation of the original draft, software, resources, and writing, reviewing, and editing of the manuscript. SB performed supervision, funding acquisition, resources, conceptualization, investigation, methodology, validation, visualization, and writing, reviewing, and editing of the manuscript. MBS performed data curation, formal analysis, visualization, validation, and writing, reviewing, and editing of the manuscript.

Corresponding author

Correspondence to Sobha Bathulapalli.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nerella, M., Suresh, M.B. & Bathulapalli, S. Optical and dielectric properties of potassium-doped tin selenide polycrystals. J Mater Sci: Mater Electron 33, 2869–2887 (2022). https://doi.org/10.1007/s10854-021-07574-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07574-y

Navigation