Skip to main content
Log in

Effect of growth parameters on morphology and quality of magnetic graphene-cobalt nanocomposite made by electrochemical deposition/exfoliation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Magnetic Graphene nanocomposites have become more significant recently due to their high conductivity and control capability with an external magnetic field. Exfoliated Graphene-Cobalt magnetic nanocomposites (EG-Co@MNCs) were produced in this study using a simple, one-step, and cost-effective electrochemical deposition method. The effect of cathode materials such as platinum, nickel, iron, steel, and copper was then investigated on the EG-Co@MNCs’ morphology, magnetization, and structure. The produced samples consisted of few-layer Graphene and cobalt nanoparticles with saturation magnetization in the range of 119–124 emu/g. Nickel cathode had a notable effect on the nanocomposites; EG-Co@MNCs synthesized by nickel cathode had high crystallinity of the cobalt nanoparticles, more uniform morphology, and better exfoliation of the Graphene sheets in SEM images. These materials can be used in magnetoresistive elements and printed spintronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data will be made available on request.

Code availability

Not applicable.

References

  1. S. Iqbal, Z. Pan, K. Zhou, Nanoscale 9, 6638 (2017)

    Article  CAS  Google Scholar 

  2. X. Yang, X. Zhang, Y. Ma, Y. Huang, Y. Wang, Y. Chen, J. Mater. Chem. 19, 2710 (2009)

    Article  CAS  Google Scholar 

  3. B. Li, H. Cao, J. Yin, Y.A. Wu, J.H. Warner, J. Mater. Chem. 22, 1876 (2012)

    Article  CAS  Google Scholar 

  4. K. Yang, L. Feng, X. Shi, Z. Liu, Chem. Soc. Rev. 42, 530 (2013)

    Article  CAS  Google Scholar 

  5. A. Jabbar, G. Yasin, W.Q. Khan, M.Y. Anwar, R.M. Korai, M.N. Nizam, G. Muhyodin, RSC Adv. 7, 31100 (2017)

    Article  CAS  Google Scholar 

  6. N. Ansari, F. Feghhi, M. Montazeri, M. Mohammadnejad, Z. Sheykhifard, S.M. Mohseni, Synth. Met. 255, 116105 (2019)

    Article  CAS  Google Scholar 

  7. Z. Sheykhifard, S.M. Mohseni, B. Tork, M.R. Hajiali, L. Jamilpanah, B. Rahmati, F. Haddadi, M. Hamdi, S.M. Mohseni, M. Mohammadbeigi, A. Ghaderi, S. Erfanifam, M. Dashtdar, F. Feghhi, N. Ansari, S. Pakdel, M. Pourfath, A. Hosseinzadegan, M. Bahreini, S.H. Tavassoli, M. Ranjbar, S.A.H. Banuazizi, S. Chung, J. Akerman, N. Nikkam, A. Sohrabi, S.E. Roozmeh, J. Mater. Sci. Mater. Electron. 29, 4171 (2018)

    Article  CAS  Google Scholar 

  8. Z. Yang, C. Lei, X. Cheng Sun, Y. Zhou, Y. Liu, J. Mater. Sci. Mater. Electron. 27, 3493 (2016)

    Article  CAS  Google Scholar 

  9. M.H. Alkordi, L.J. Weseliński, V. D’Elia, S. Barman, A. Cadiau, M.N. Hedhili, A.J. Cairns, R.G. Abdulhalim, J.M. Basset, M. Eddaoudi, J. Mater. Chem. A 4, 7453 (2016)

    Article  CAS  Google Scholar 

  10. A.N. Naveen, P. Manimaran, S. Selladurai, J. Mater. Sci. Mater. Electron. 26, 8988 (2015)

    Article  CAS  Google Scholar 

  11. X. Ma, H. Tao, K. Yang, L. Feng, L. Cheng, X. Shi, Y. Li, L. Guo, Z. Liu, Nano Res. 5, 199 (2012)

    Article  CAS  Google Scholar 

  12. M. Ghorbani, M. Chamsaz, M. Aghamohammadhasan, A. Shams, Anal. Biochem. 551, 7 (2018)

    Article  CAS  Google Scholar 

  13. W. Hussain, A. Badshah, R.A. Hussain, M.A. Aleem, A. Bahadur, S. Iqbal, M.U. Farooq, H. Ali, Mater. Chem. Phys. 194, 345 (2017)

    Article  CAS  Google Scholar 

  14. A.J. Ahamed, P.V. Kumar, G. Srikesh, J. Environ. Nanotechnol 4, 1 (2015)

    CAS  Google Scholar 

  15. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I. Grigorieva, S. Dubonos, A.A. Firsov, Nature. 438(7065), 197–200 (2005)

    Article  CAS  Google Scholar 

  16. S.A. Makhlouf, J. Magn. Magn. Mater. 246, 184 (2002)

    Article  CAS  Google Scholar 

  17. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Carbon N. Y. 45, 1558 (2007)

    Article  CAS  Google Scholar 

  18. A. Bahadur, W. Hussain, S. Iqbal, F. Ullah, M. Shoaib, G. Lin, K. Feng, J. Mater. Chem. A 9, 12255 (2021)

    Article  CAS  Google Scholar 

  19. P. Sarala, T.V. Venkatesha, T.V.-P.E. Acta, Port. Electrochimica Acta 31, 175 (2013)

    Article  Google Scholar 

  20. A.M. Abdelkader, A.J. Cooper, R.A.W. Dryfe, I.A. Kinloch, Nanoscale 7, 6944 (2015)

    Article  CAS  Google Scholar 

  21. B. Partoens, F.M. Peeters, Phys. Rev. B 74, 075404 (2006)

    Article  Google Scholar 

  22. F. Pagnanelli, P. Altimari, M. Bellagamba, G. Granata, E. Moscardini, P.G. Schiavi, L. Toro, Electrochim. Acta 155, 228 (2015)

    Article  CAS  Google Scholar 

  23. D. Cao, H. Li, Z. Wang, J. Wei, J. Wang, Q. Liu, Thin Solid Films 597, 1 (2015)

    Article  CAS  Google Scholar 

  24. X. Xing, R. Liu, S. Liu, S. Xiao, Y. Xu, C. Wang, D. Wu, Electrochim. Acta 194, 310 (2016)

    Article  CAS  Google Scholar 

  25. T.M. McCoy, P. Brown, J. Eastoe, R.F. Tabor, A.C.S. Appl, Mater. Interfaces 7, 2124 (2015)

    Article  CAS  Google Scholar 

  26. C. Liu, Z.G. Neale, G. Cao, Mater. Today 19, 109 (2016)

    Article  CAS  Google Scholar 

  27. N.K. Allam, C.A. Grimes, Sol. Energy Mater. Sol. Cells 92, 1468 (2008)

    Article  CAS  Google Scholar 

  28. K. Parvez, Z.-S.S. Wu, R. Li, X. Liu, R. Graf, X. Feng, K. Müllen, J. Am. Chem. Soc. 136, 6083 (2014)

    Article  CAS  Google Scholar 

  29. K. Parvez, R. Li, S.R. Puniredd, Y. Hernandez, F. Hinkel, S. Wang, X. Feng, K. Müllen, ACS Nano 7, 3598 (2013)

    Article  CAS  Google Scholar 

  30. K. Rekab, C. Lepeytre, F. Goettmann, M. Dunand, C. Guillard, J.M. Herrmann, J. Radioanal. Nucl. Chem. 303, 131 (2015)

    Article  CAS  Google Scholar 

  31. D. Hamulić, I. Milošev, D. Lützenkirchen-Hecht, Thin Solid Films 667, 11 (2018)

    Article  Google Scholar 

  32. M.M. Shahid, P. Rameshkumar, W.J. Basirun, J.C. Juan, N.M. Huang, Electrochim. Acta 237, 61 (2017)

    Article  CAS  Google Scholar 

  33. Y. Wang, L. Wang, B. Wei, Q. Miao, Y. Yuan, Z. Yang, W. Fei, RSC Adv. 5, 100106 (2015)

    Article  CAS  Google Scholar 

  34. Y. Bai, W. Wang, R. Wang, J. Sun, L. Gao, J. Mater. Chem. A 3, 12530 (2015)

    Article  CAS  Google Scholar 

  35. Y. Zhang, S.W. Or, Z. Zhang, RSC Adv. 1, 1287 (2011)

    Article  CAS  Google Scholar 

  36. K.Y.A. Lin, F.K. Hsu, W.D. Lee, J. Mater. Chem. A 3, 9480 (2015)

    Article  Google Scholar 

  37. Y. Li, J. Zhai, L. Zhao, J. Chen, X. Shang, C. Song, F. Meng, J. Solid State Chem. 276, 19 (2019)

    Article  CAS  Google Scholar 

  38. Y. Wang, X. Gao, C. Lin, L. Shi, X. Li, G. Wu, J. Alloys Compd. 785, 765 (2019)

    Article  CAS  Google Scholar 

  39. K. Kakati, G. Pugazhenthi, P.K. Iyer, Int. J. Polym. Mater. 61, 931 (2012)

    Article  CAS  Google Scholar 

  40. C.L. Jia, Y.B. Guo, D. Wang, C. Yang, X. Li, W.H. Xie, G.T. Shen, Z.J. Zhao, J. Magn. Magn. Mater. 544, 168662 (2022)

    Article  CAS  Google Scholar 

  41. N. Li, H.L. Jiang, X. Wang, X. Wang, G. Xu, B. Zhang, L. Wang, R.S. Zhao, J.M. Lin, Trends Anal. Chem. 102, 60 (2018)

    Article  CAS  Google Scholar 

  42. Z. Ji, X. Shen, Y. Song, G. Zhu, J. Mater. Sci. Eng. B 176, 711 (2011)

    Article  CAS  Google Scholar 

  43. S. Hatamie, Z.M. Balasi, M.M. Ahadian, T. Mortezazadeh, F. Shams, S. Hosseinzadeh, J. Drug Deliv. Sci. Technol. 65, 102680 (2021)

    Article  CAS  Google Scholar 

  44. L. Abbasi, K. Hedayati, D. Ghanbari, J. Mater. Sci. Mater 32, 14477 (2021)

    Article  CAS  Google Scholar 

  45. E. Sadatmansouri, A.A. Shahrnoy, A.R. Mahjoub, Diam. Relat. Mater. 111, 108209 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work is based upon research funded by Iran National Science Foundation (INSF) under project No 4001550.

Funding

Alzahra University supported this research.

Author information

Authors and Affiliations

Authors

Contributions

SFAD contributed to the investigation, formal analysis, methodology, visualization, writing of the original draft and the manuscript. NA contributed to the conceptualization, supervision, reviewing, and editing of the manuscript.

Corresponding author

Correspondence to Narges Ansari.

Ethics declarations

Conflict of interest

The authors declare that they have no financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research presents a one-step facile method to produce highly magnetic cobalt nanoparticles with a uniform distribution on electrochemically exfoliated graphene sheets. Electrochemical co-exfoliation–deposition provides a scalable method to produce magnetic graphene nanocomposites with controlled magnetic and chemical properties by controlling synthesis parameters such as cathode material. A detailed crystallographic study is performed to investigate the effect of the cathode material.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghaie Doost, S.F., Ansari, N. Effect of growth parameters on morphology and quality of magnetic graphene-cobalt nanocomposite made by electrochemical deposition/exfoliation. J Mater Sci: Mater Electron 33, 3801–3809 (2022). https://doi.org/10.1007/s10854-021-07571-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07571-1

Navigation