Skip to main content
Log in

A simple and low-cost method of preparing CoFe2O4/Ba0.85Ca0.15Zr0.1Ti0.9O3 composite ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, we used the single-pot synthesis methods to prepare the uniform and pure CFO/BCZT composite particles with different mass ratios (1:3, 1:4, 1:5, 1:6, 1:7) at first. Then these particles were sintered into the composite ceramics successfully at 1200 °C. The surface morphology, dielectric, leakage, ferroelectric, and ferromagnetic properties of composite ceramics were studied systematically. All diffraction peaks correspond to the standard card and the XRD pattern shows no impurity peaks. Then the grain size of composite powders is in the range of 30–40 nm. SEM results show that the crystal grains of the ferromagnetic and ferroelectric phases are easy to agglomerate. The dielectric properties of composite ceramics are mainly related to the mass ratio of the ferroelectric phase. As the content of BCZT improves, the dielectric constant slowly increases, and the dielectric loss slowly reduces at high frequency. The saturated polarization (Ps), residual polarization (Pr), and coercive field (Ec) of the 1:4 reach 3.03 µC/cm2, 1.14 µC/cm2, and 8.91 kV/cm, respectively. The leakage current and ferromagnetism of composite ceramics could be improved by adjusting the mass ratio. In addition, the frequency could well change the magnetoelectric coupling coefficient (αME) of the sample. The maximum magnetoelectric coupling coefficient of the 1:3 is 92.24 mV/cm Oe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig.10
Fig.11
Fig.12
Fig.13
Fig.14
Fig.15

Similar content being viewed by others

Data availability

The data presented in this study are available on request from the corresponding author. The data are not publicly available due to privacy restriction.

References

  1. V.A. Khomchenko, D.V. Karpinsky, A.L. Kholkin et al., J. Appl. Phys. 108, 074109 (2010)

    Article  Google Scholar 

  2. S. Sharma, J.M. Siqueiros, O.R. Herrera, J. Alloy. Compd. 853, 156979 (2021)

    Article  CAS  Google Scholar 

  3. R.L. Gao, H.W. Yang, Y.S. Chen et al., Appl. Phys. Lett. 104, 031906 (2014)

    Article  Google Scholar 

  4. X.J. He, B. Liu, Y.B. Pan, J.R. Lin, Ferroelectrics 514, 158–164 (2017)

    Article  CAS  Google Scholar 

  5. M. Geramilla, R. Balakrishnan, S.T. Natarajan et al., Appl. Phys. A 125, 1 (2019)

    Article  CAS  Google Scholar 

  6. M.A. Rafiq, T.U. Zaman, H.A. Ishfaq et al., Ceram. Int. 46, 2489–2499 (2020)

    Article  CAS  Google Scholar 

  7. K.C. Verma, N. Goyal, R.K. Kotnala, Physica B 554, 9–16 (2019)

    Article  CAS  Google Scholar 

  8. V.R. Monaji, S.D. Kumar et al., Ceram. Int. 44, 4298–4306 (2018)

    Article  Google Scholar 

  9. P. Galizia, C. Baldisserri, E. Mercadelli, C. Capiani, C. Galassi et al., Materials 13, 2592 (2020)

    Article  CAS  Google Scholar 

  10. Y. Liu, G.W. Xu, Y.Y. Xie, H. Lv, C.Y. Huang, Y.W. Chen et al., Ceram. Int. 44, 9649–9655 (2018)

    Article  CAS  Google Scholar 

  11. C.Y. Li, R.C. Xu, R.L. Gao et al., Mater. Chem. Phys. 249, 123144 (2020)

    Article  CAS  Google Scholar 

  12. L.K. Pradhan, R. Pandey, R. Kumar, M. Kar, J. Appl. Phys. 123, 074101 (2018)

    Article  Google Scholar 

  13. N. Buatip, M. Dhanunjaya, P. Amonpattaratkit et al., Radiat. Phys. Chem. 172, 108770 (2020)

    Article  CAS  Google Scholar 

  14. P. Pomyai, D. Munthala, T. Sonklin et al., J. Eur. Ceram. Soc. 41, 2497–2505 (2021)

    Article  CAS  Google Scholar 

  15. Y. Huan, X.H. Wang, J. Fang, L.T. Li, J. Eur. Ceram. Soc. 34, 1445–1448 (2014)

    Article  Google Scholar 

  16. A. Guzu, C.E. Ciomaga, M. Airimioaei et al., J. Alloy. Compd. 796, 55–64 (2019)

    Article  CAS  Google Scholar 

  17. G.J. Li, X.M. Li, Q.X. Zhu, J.L. Zhao, X.D. Gao, CrystEngComm 21, 6545–6551 (2019)

    Article  CAS  Google Scholar 

  18. Q.W. Zhang, W. Cai, C. Zhou et al., Appl. Phys. A 125, 1–9 (2019)

    Article  Google Scholar 

  19. S.A. Raza, S.U. Awan, S. Hussain, S.A. Shah et al., J. Appl. Phys. 128, 124101 (2020)

    Article  CAS  Google Scholar 

  20. Q.T. Li, Q.W. Zhang, W. Cai et al., Mater. Chem. Phys. 252, 123242 (2020)

    Article  CAS  Google Scholar 

  21. J. Kulawik, D. Szwagierczak, P. Guzdek, J. Magn. Magn. Mater. 324, 3052–3057 (2012)

    Article  CAS  Google Scholar 

  22. I. Coondoo, N. Panwar, D. Alinkin et al., Acta Mater. 155, 331–342 (2018)

    Article  CAS  Google Scholar 

  23. G. Kotnana, F. Sayed, D.C. Joshi et al., J. Magn. Magn. Mater. 511, 166792 (2020)

    Article  CAS  Google Scholar 

  24. P. Acharyya, P.K. Samanta, A. Sarkar et al., Nanoscale 11, 4001–4007 (2019)

    Article  CAS  Google Scholar 

  25. N. Wang, S. Wang, G. Liu et al., Mat. Sci. Eng. A 806, 140842 (2021)

    Article  CAS  Google Scholar 

  26. H. Istgaldi, M.S. Asl, P. Shahi et al., Ceram. Int. 46, 2923–2930 (2020)

    Article  CAS  Google Scholar 

  27. S. Sharma, J.M. Siqueiros, G. Srinet et al., J. Alloy. Compd. 732, 666–673 (2018)

    Article  CAS  Google Scholar 

  28. R.L. Gao, Q.M. Zhang, Z.Y. Xu et al., Compos. Part B-Eng. 166, 204–212 (2019)

    Article  CAS  Google Scholar 

  29. T. Cheng, L.F. Xu, P.B. Qi et al., J. Alloy. Compd. 602, 269–274 (2014)

    Article  CAS  Google Scholar 

  30. A. Barua, S.K. Dey, S.K. Sabyasachi, S. Kumar, J. Alloy. Compd. 854, 157217 (2021)

    Article  CAS  Google Scholar 

  31. S. Singh, N. Kumar, R. Bhargava et al., J. Alloy. Compd. 587, 437–441 (2014)

    Article  CAS  Google Scholar 

  32. P.Q. Mantas, J. Eur. Ceram. Soc. 19, 2079–2086 (1999)

    Article  CAS  Google Scholar 

  33. V.R. Monaji, J.P. Paul, N.S. Sowmya et al., Ceram. Int. 42, 17827–17833 (2016)

    Article  Google Scholar 

  34. Z.H. Wang, R.L. Gao, G. Cheng et al., Ceram. Int. 46, 9154–9160 (2020)

    Article  CAS  Google Scholar 

  35. Y.Z. Xue, R.C. Xu, Z.H. Wang et al., J. Electron. Mater. 48, 4806–4817 (2019)

    Article  CAS  Google Scholar 

  36. Z.J. Wang, Y. Chen, J. Alloy. Compd. 854, 157270 (2021)

    Article  CAS  Google Scholar 

  37. M. Hashim, Alimuddin, S. Kumar et al., J. Alloy. Compd. 511, 107–114 (2012)

    Article  CAS  Google Scholar 

  38. H. Yang, G. Zhang, Y. Lin, J. Alloy. Compd. 644, 390–397 (2015)

    Article  CAS  Google Scholar 

  39. J. Wei, Y. Liu, X.F. Bai et al., Ceram. Int. 42, 13395–13403 (2016)

    Article  CAS  Google Scholar 

  40. G.W. Pabst, L.W. Martin, Y.H. Chu, R. Ramesh, Appl. Phys. Lett. 90, 072902 (2007)

    Article  Google Scholar 

  41. M.A. Khan, T.P. Comyn, A.J. Bell, Appl. Phys. Lett. 92, 072908 (2008)

    Article  Google Scholar 

  42. Y.H. Chen, D.H. Chen, L.F. Meng et al., R. Soc. Open sci. 7, 191822 (2020)

    Article  CAS  Google Scholar 

  43. Y.R. Wang, Y.P. Pu, Y.C. Tian et al., J. Alloy. Compd. 696, 1307–1313 (2017)

    Article  CAS  Google Scholar 

  44. S. Smail, M. Benyoussef, K. Taïbi et al., Mater. Chem. Phys. 252, 123462 (2020)

    Article  CAS  Google Scholar 

  45. R.V. Krishnaiah, A. Srinivas, S.V. Kamat, T. Karthik, S. Asthana, Ceram. Int. 40, 7799–7804 (2014)

    Article  CAS  Google Scholar 

  46. J.D. Bobić, M. Ivanov, N.I. Ilić et al., Ceram. Int. 44, 6551–6557 (2018)

    Article  Google Scholar 

  47. A. Franco, F.C. Silva, Appl. Phys. Lett. 96, 172505 (2010)

    Article  Google Scholar 

  48. M. Atif, M. Nadeem, J. Alloy. Compd. 623, 447–453 (2015)

    Article  CAS  Google Scholar 

  49. S.M. Mane, A.R. Nimbalkar, H. Kim et al., J. Alloy. Compd. 849, 156599 (2020)

    Article  CAS  Google Scholar 

  50. M.A. Radmanesh, S.A. Seyyed Ebrahimi, J. Magn. Magn. Mater. 324, 3094–3098 (2012)

    Article  CAS  Google Scholar 

  51. H. Palneedi, S. Na, G. Hwang et al., J. Alloy. Compd. 765, 764–770 (2018)

    Article  CAS  Google Scholar 

  52. S.R. Wadgane, S.T. Alone, A. Karim et al., J. Magn. Magn. Mater. 471, 388–393 (2019)

    Article  CAS  Google Scholar 

  53. Z.Q. Zheng, P. Zhou, Y. Liu et al., J. Alloy. Compd. 818, 152871 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful for financial assistance provided by the Natural Science Foundation of China (Grant No. 52074232).

Funding

This work was financially supported by the Natural Science Foundation of China (No. 52074232).

Author information

Authors and Affiliations

Authors

Contributions

CL and YL involved in conceptualization; CL, JZ, and YY performed data curation; HZ, XY, and QZ contributed in investigation; YL participated in project administration; CL and YL took part in writing—review & editing. All authors have read and agreed to the version of the manuscript.

Corresponding author

Correspondence to Yuanhua Lin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (JPG 65 KB)

Supplementary file2 (JPG 97 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Zhang, J., Yuan, Y. et al. A simple and low-cost method of preparing CoFe2O4/Ba0.85Ca0.15Zr0.1Ti0.9O3 composite ceramics. J Mater Sci: Mater Electron 33, 3757–3773 (2022). https://doi.org/10.1007/s10854-021-07567-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07567-x

Navigation