Skip to main content
Log in

The crystal structure, sintering behavior and microwave dielectric properties of BiZn2PO6 ceramics for ULTCC applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A novel BiZn2PO6 ceramic with good performance was composited under ultra-low-temperature through the traditional solid-state reaction method. The crystal structure, microstructure and microwave dielectric properties of BiZn2PO6 ceramics were analyzed in detail. The XRD spectra showed that the pure crystal phase of BiZn2PO6 ceramic was obtained successfully. The results of further Rietveld refinement based on XRD data indicated that BiZn2PO6 ceramic possessed an orthorhombic structure. The density of BiZn2PO6 ceramics was reflected by SEM micrographs, grain size distribution and relative density data. The relative density of BiZn2PO6 ceramic sintered at 725 °C for 4 h reached 97.8%. The pure BiZn2PO6 ceramic sintered at 725 °C had the best properties, the data of permittivity, quality factor and resonant frequency temperature coefficient were as follows: εr = 13.269, Q × f = 18,030 GHz, τf = − 18.9 ppm/°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

Code availability

Not applicable.

References

  1. Y.H. Zhang, H.T. Wu, Crystal structure and microwave dielectric properties of La2(Zr1-xTix)(MoO4) 9(0 ≤ x ≤ 0.1) ceramics. J. Am. Ceram. Soc. 102, 4092–4102 (2019)

    Article  CAS  Google Scholar 

  2. L.X. Pang, D. Zhou, Modification of NdNbO4 microwave dielectric ceramic by Bi substitutions. J. Am. Ceram. Soc. 102, 2278–2282 (2019)

    Article  CAS  Google Scholar 

  3. M.T. Sebastian, H. Jantunen, Low loss dielectric materials for LTCC applications: a review. Int. Mater. Rev. 53, 57–90 (2008)

    Article  CAS  Google Scholar 

  4. H. Zuo, X. Tang, H. Zhang, Y. Lai, Y. Jing, H. Su, Low-dielectric-constant LiAlO2 ceramics combined with LBSCA glass for LTCC applications. Ceram. Int. 43, 8951–8955 (2017)

    Article  CAS  Google Scholar 

  5. Q. Lin, K. Song, B. Liu, H.B. Bafrooei, D. Zhou, W. Su, F. Shi, D. Wang, H. Lin, I.M. Reaney, Vibrational spectroscopy and microwave dielectric properties of AY2Si3O10 (A = Sr, Ba) ceramics for 5G applications. Ceram. Int. 46, 1171–1177 (2020)

    Article  CAS  Google Scholar 

  6. B. Tang, S. Yu, H. Chen, S. Zhang, X. Zhou, Phase structure and microwave dielectric properties of Zr(Zn1/3Nb2/3)xTi2-xO6 (0.2 ≤ x ≤ 0.8) ceramics. J. Mater. Sci. Mater. Electron. 24, 1475–1479 (2013)

    Article  CAS  Google Scholar 

  7. T. Teranishi, R. Kanemoto, H. Hayashi, A. Kishimoto, Effect of the (Ba+Sr)/Ti ratio on the microwave-tunable properties of Ba0.6Sr0.4TiO3 ceramics. J. Am. Ceram. Soc. 100, 1037–1043 (2017)

    Article  CAS  Google Scholar 

  8. I.M. Reaney, D. Iddles, Microwave dielectric ceramics for resonators and filters in mobile phone networks. J. Am. Ceram. Soc. 89, 2063–2072 (2006)

    CAS  Google Scholar 

  9. P. Zhang, L. Liu, M. Xiao, Y. Zhao, A novel temperature stable and high Q microwave dielectric ceramic in Li3(Mg1-xMnx)2NbO6 system. J. Mater. Sci. Mater. Electron. 28, 12220–12225 (2017)

    Article  CAS  Google Scholar 

  10. P. Zhang, L. Liu, M. Xiao, Microwave dielectric properties of high Q and temperature stable Li3(Mg1-xNix)2NbO6 ceramics. J. Mater. Sci. Mater. Electron. 29, 5057–5063 (2018)

    Article  CAS  Google Scholar 

  11. M.T. Sebastian, R. Ubic, H. Jantunen, Low-loss dielectric ceramic materials and their properties. Int. Mater. Rev. 60, 392–412 (2015)

    Article  Google Scholar 

  12. H. Ohsato, T. Tsunooka, T. Sugiyama, K.-I. Kakimoto, H. Ogawa, S, Forsterite ceramics for millimeterwave dielectrics. J. Electroceramics. 17, 445–450 (2006)

    Article  CAS  Google Scholar 

  13. M.T. Sebastian, H. Wang, H. Jantunen, Low temperature co-fired ceramics with ultra-low sintering temperature: a review. Curr. Opin. Solid State Mater. Sci. 20, 151–170 (2016)

    Article  CAS  Google Scholar 

  14. H.T. Yu, J.S. Liu, W.L. Zhang, S.R. Zhang, Ultra-low sintering temperature ceramics for LTCC applications: a review. J. Mater. Sci. Mater. Electron. 26(12), 9414–9423 (2015)

    Article  CAS  Google Scholar 

  15. D. Thomas, P. Abhilash, M.T. Sebastian, Casting and characterization of LiMgPO4 glass free LTCC tape for microwave applications. J. Eur. Ceram. Soc. 33, 87–93 (2013)

    Article  CAS  Google Scholar 

  16. P. Zhang, S. Wu, M. Xiao, The microwave dielectric properties and crystal structure of low temperature sintering LiNiPO4 ceramics. J. Eur. Ceram. Soc. 38, 4433–4439 (2018)

    Article  CAS  Google Scholar 

  17. C.C. Xia, D.H. Jiang, G.H. Chen, Y. Luo, B. Li, C.L. Yuan, C.R. Zhou, Microwave dielectric ceramic of LiZnPO4 for LTCC applications. J. Mater. Sci. Mater. Electron. 28, 12026–12031 (2017)

    Article  CAS  Google Scholar 

  18. R. Peng, Y. Li, G. Yu, Y. Lu, S. Li, Effect of Co2+ substitution on the microwave dielectric properties of LiZnPO4 ceramics. J. Mater. Sci. Mater. Electron. 47, 7281–7287 (2018)

    Article  CAS  Google Scholar 

  19. R. Peng, Y. Lu, Z. Tao, D. Chen, L. Shi, Q. Zhang, Y. Li, Improved microwave dielectric properties and sintering behavior of LiZnPO4 ceramic by Ni2+ doping based on first-principle calculation and experiment. Ceram. Int. 46, 11021–11032 (2020)

    Article  CAS  Google Scholar 

  20. R. Peng, Y. Li, H. Su, Y. Lu, L. Shi, Y. Yun, B. Liao, The modification of sintering and microwave dielectric properties of Mn2+ doped LiZnPO4 ceramic. J. Mater. Sci. Technol. 9, 4994–5006 (2020)

    CAS  Google Scholar 

  21. R. Nath, K.M. Ranjith, B. Roy, D.C. Johnston, Y. Furukawa, A.A. Tsirlin, Magnetic transitions in the spin-5/2 frustrated magnet BiMn2PO6 and strong lattice softening in BiMn2PO6 and BiZn2PO6 below 200 K. Phys. Rev. B. (2014). https://doi.org/10.1103/PhysRevB.90.024431

    Article  Google Scholar 

  22. J. Chen, X. Zhang, S. Zhu, H. Ma, X. Li, H. Yu, F. Wang, Elastic anisotropy and thermodynamics properties of BiCu2PO6, BiZn2PO6 and BiPb2PO6 ceramics materials from first-principles calculations. Ceram. Int. 46, 8575–8581 (2020)

    Article  CAS  Google Scholar 

  23. D. Zhou, C.A. Randall, L.-X. Pang, H. Wang, J. Guo, G.-Q. Zhang, X.-G. Wu, L. Shui, X. Yao, Microwave dielectric properties of Li2WO4 ceramic with ultra-low sintering temperature. J. Am. Ceram. Soc. 94, 348–350 (2011)

    Article  CAS  Google Scholar 

  24. S.E. Kalathil, U.A. Neelakantan, R. Ratheesh, Microwave dielectric properties of ultralow-temperature cofirable Ba3V4O13 ceramics. J. Am. Ceram. Soc. 97, 1530–1533 (2014)

    Article  CAS  Google Scholar 

  25. J. Honkamo, H. Jantunen, G. Subodh, M.T. Sebastian, P. Mohanan, Tape casting and dielectric properties of Zn2Te3O8-based ceramics with an ultra-low sintering temperature. Int. J. Appl. Ceram. Technol. 6, 531–536 (2009)

    Article  CAS  Google Scholar 

  26. S.-F. Wang, Y.-F. Hsu, Y.-R. Wang, C.-C. Sung, Ultra-low-fire Zn2Te3O8-TiTe3O8 ceramic composites. J. Am. Ceram. Soc. 94, 812–816 (2011)

    Article  CAS  Google Scholar 

  27. M.-Y. Chen, J. Juuti, C.-S. Hsi, C.-T. Chia, H. Jantunen, Dielectric properties of ultra-low sintering temperature Al2O3-BBSZ glass composite. J. Am. Ceram. Soc. 98, 1133–1136 (2015)

    Article  CAS  Google Scholar 

  28. H. Yu, K. Ju, K. Wang, A novel glass- ceramic with ultra- low sintering temperature for LTCC application. J. Am. Ceram. 97, 704–707 (2014)

    Article  CAS  Google Scholar 

  29. E. Ketatni, B. Mernari, F. Abraham, O. Mentre, Crystal structure of BiZn2PO6. Filiation between related compounds. J. Solid State Chem. 153, 48–54 (2000)

    Article  CAS  Google Scholar 

  30. H. Luo, J. Li, J. Xu, L. Fang, Y. Tang, C. Li, A novel low-firing BiZn2VO6 microwave dielectric ceramic with low loss. J. Mater. Sci. Mater. Electron. 27, 210–214 (2016)

    Article  Google Scholar 

  31. H.-D. Xie, C. Chen, H.-H. Xi, R. Tian, X.-C. Wang, Synthesis, low temperature co-firing, and microwave dielectric properties of two ceramics BiM2VO6 (M = Cu, Ca). Ceram. Int. 42, 989–995 (2016)

    Article  CAS  Google Scholar 

  32. H.-D. Xie, H.-H. Xi, F. Li, C. Chen, Microwave dielectric properties of BiMg2VO6 ceramic with low sintering temperature. J. Inorg. Mater. 30, 202–206 (2015)

    Article  CAS  Google Scholar 

  33. H.L. Pan, L. Cheng, H.T. Wu, Relationships between crystal structure and microwave dielectric properties of Li2(Mg1-xCox)3TiO6 (0 ≤ x ≤ 0.4) ceramics. Ceram. Int. 43, 15018–15026 (2017)

    Article  CAS  Google Scholar 

  34. R.D. Shannon, G.R. Rossman, Dielectric constants of silicate garnets and the oxide additivity rule. Am. Mineral. 77, 94–100 (1992)

    CAS  Google Scholar 

  35. R.D. Shannon, Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys. (1993). https://doi.org/10.1063/1.353856

    Article  Google Scholar 

  36. D. Stroud, Stroud D, the effective medium approximations: some recent developments. Superlattice. Microst. 23, 567–573 (1998). https://doi.org/10.1006/spmi.1997.0524

    Article  Google Scholar 

  37. J. Li, L. Fang, H. Luo, J. Khaliq, Y. Tang, C. Li, Li4WO5: a temperature stable low-firing microwave dielectric ceramic with rock salt structure. J. Eur. Ceram. Soc. 36, 243–246 (2016)

    Article  CAS  Google Scholar 

  38. S.H. Yoon, D.-W. Kim, S.-Y. Cho, K.S. Hong, Investigation of the relations between structure and microwave dielectric properties of divalent metal tungstate compounds. J. Eur. Ceram. Soc. 26, 2051–2054 (2006)

    Article  CAS  Google Scholar 

  39. D.F. Xue, S.Y. Zhang, Calculation of the nonlinear optical coefficient of the NdAl3(BO3)4crystal. J. Phys. Condens. Matter. 8, 1949–1956 (1996)

    Article  CAS  Google Scholar 

  40. Z.J. Wu, Q.B. Meng, S.Y. Zhang, Semiempirical study on the valences of Cu and bond covalency in Y1-xCaxBa2Cu3O6+y. Phys. Rev. B. 58, 958–962 (1998)

    Article  CAS  Google Scholar 

  41. Q.B. Meng, Z.J. Wu, S.Y. Zhang, Evaluation of the energy barrier distribution in many-particle systems using the path integral approach. J. Phys. Condens. Matter. 10, 85–88 (1998)

    Article  Google Scholar 

  42. P. Zhang, Y. Zhao, L. Li, The correlations among bond ionicity, lattice energy and microwave dielectric properties of (Nd1−xLax)NbO4 ceramics. Phys. Chem. Chem. Phys. 17, 16692–16698 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Major Projects of Science and Technology in Tianjin (Grant No. 18ZXJMTG00020).

Author information

Authors and Affiliations

Authors

Contributions

PZ: Conceived and designed the work and revised the manuscript. XT: Performed the experiment, completed the data analyses and wrote the manuscript. MH: Helped perform the analysis with constructive discussions. SX: Approved the final version.

Corresponding authors

Correspondence to Ping Zhang or Sheng Xie.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Consent to participate

Written informed consent for participation was obtained from all participants.

Consent for publication

Written informed consent for publication was obtained from all participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Tian, X., Hao, M. et al. The crystal structure, sintering behavior and microwave dielectric properties of BiZn2PO6 ceramics for ULTCC applications. J Mater Sci: Mater Electron 33, 3738–3747 (2022). https://doi.org/10.1007/s10854-021-07565-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07565-z

Navigation