Skip to main content

Advertisement

Log in

CO2 plasma treatment to promote crystallinity of p-type emitter layer for the silicon heterojunction solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

To improve the properties of the emitter layer so as to prompt the performance of the silicon heterojunction (SHJ) solar cells, we have implemented the CO2 plasma treatment on i-a-Si:H/p-type emitter interface. Its effect on the electrical, optical, and structural properties as well as passivation characteristics of the p-type emitter layer is investigated. Using this kind of nuclear-induced treatment, the conductivity of the emitter is remarkably improved and increases by 6–8 orders of magnitude. And the optical band gap E04 of p-type layer increases and can be tuned between 1.98 and 2.04 eV, depending on the treatment time. In addition, due to the doping of oxygen into the a-Si:H film, the treatment makes the total surface passivation degrade. As a result, the open-circuit voltage and short-circuit current of the SHJ solar cell both decrease slightly. However, owing to improving p-type layer, the Fill Factor and conversion efficiency of the solar cell with the CO2 plasma treatment enhance obviously. This work provides an effective way of improving the properties of the emitter layer of the SHJ solar cells and thus to improve their efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. A. Descoeudres, Z.C. Holman, L. Barraud, S. Morel, D.S. Wolf, IEEE. J. Photovolt. 3, 83 (2013)

    Article  Google Scholar 

  2. J. Kegel, H. Angermann, U. Stürzebecher, E. Conrad, M. Mews, L. Korte, B. Stegemann, Appl. Surf. Sci. 301, 56 (2014)

    Article  CAS  Google Scholar 

  3. K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, Nat. Energy 2, 17032 (2017)

    Article  CAS  Google Scholar 

  4. Z.D. Eygi, U. Das, S.S. Hegedus, R. Birkmire, J. Renew. Sustain. Energy 5, 013117 (2013)

    Article  Google Scholar 

  5. M. Bivour, C. Reichel, M. Hermle, S.W. Glunz, Sol. Energy Mater. Sol. Cells 106, 11 (2012)

    Article  CAS  Google Scholar 

  6. A. Nakane, S. Fujimoto, H. Fujiwara, J. Appl. Phys 122, 203101 (2017)

    Article  Google Scholar 

  7. G. Nogay, J.P. Seif, Y. Riesen, A. Tomasi, Q. Jeangros, N. Wyrsch, F.J. Haug, S. De Wolf, C. Ballif, IEEE J. Photovolt. 6, 1654 (2016)

    Article  Google Scholar 

  8. B. Goldstein, C.R. Dickson, I.H. Campbell, P.M. Fauchet, Appl. Phys. Lett. 53, 2672 (1988)

    Article  CAS  Google Scholar 

  9. L. Mazzarella, S. Kirner, O. Gabriel, S.S. Schmidt, L. Korte, B. Stannowski, B. Rech, R. Schlatmann, Phys. Status solidi (A) 214, 1532958 (2017)

    Article  Google Scholar 

  10. H. Wernerus, M. Bivour, L. Kroely, M. Hermle, W. Wolke, Energy Proc. 55, 310 (2014)

    Article  CAS  Google Scholar 

  11. M. Kondo, Y. Toyoshima, A. Matsuda, K. Ikuta, J. Appl. Phys. 80, 6061 (1996)

    Article  CAS  Google Scholar 

  12. E. Vallat-Sauvain, J. Bailat, J. Meier, X. Niquille, U. Kroll, A. Shah, Thin Solid Films 485, 77 (2005)

    Article  CAS  Google Scholar 

  13. M. Python, E. Vallat-Sauvain, J. Bailat, D. Domine, L. Fesquet, A. Shah, C. Ballif, J. Non-Cryst. Solids 354, 2258 (2008)

    Article  CAS  Google Scholar 

  14. Z. Zuo, G. Cui, Y. Wang, J. Wang, L. Pu, Y. Shi, Chem. Vap. Depos. 19, 363 (2013)

    Article  CAS  Google Scholar 

  15. M. Bailly, J. Carpenter, Z. Holman, S. Bowden, in: Proceedings of the 40th IEEE Photovoltaic Specialists Conference, p. 1201 (2014)

  16. A. Descoeudres, L. Barraud, S. De Wolf, B. Strahm, D. Lachenal, C. Guerin, Z.C. Holman, F. Zicarelli, B. Demaurex, J. Seif, J. Holovsky, C. Ballif, Appl. Phys. Lett 99, 123506 (2011)

    Article  Google Scholar 

  17. M. Mews, T.F. Schulze, N. Mingirulli, L. Korte, Appl. Phys. Lett. 102, 122106 (2013)

    Article  Google Scholar 

  18. F.Y. Meng, L.L. Shen, J.H. Shi, L.P. Zhang, J.N. Liu, Y.C. Liu, Z.X. Liu, Appl. Phys. Lett. 107, 223901 (2015)

    Article  Google Scholar 

  19. A. Neumuller, O. Sergeev, S.J. Heise, S. Bereznev, O. Volobujeva, J.F.L. Salas, M. Vehse, C. Agert, Nano Energy 43, 228 (2018)

    Article  Google Scholar 

  20. Y.F. Zhao, L. Mazzarella, P. Procel, C. Han, G.T. Yang, A. Weeber, M. Zeman, O. Isabella, Prog. Photovolt. Res. Appl. 28, 425 (2020)

    Article  CAS  Google Scholar 

  21. J. Geissbühler, S. De Wolf, B. Demaurex, J.P. Seif, D.T.L. Alexander, L. Barraud, C. Balif, Appl. Phys. Lett. 102, 231604 (2013)

    Article  Google Scholar 

  22. N. Layadi, P.R.I. Cabarrocas, B. Drevillon, I. Solomon, Phys. Rev. B 52, 5136 (1995)

    Article  CAS  Google Scholar 

  23. P. Pernet, M. Goetz, H. Keppner, A. Shah, MRS. Symp. Proc. 452, 889 (1997)

    CAS  Google Scholar 

  24. S. Fujikake, H. Ohta, A. Asano, Y. Ichikawa, H. Sakai, MRS. Symp. Proc. 258, 440 (1992)

    Article  Google Scholar 

  25. J. Tauc, R. Grigorovici, A. Vancu, Phys. Status. Solidi 15, 627 (1966)

    Article  CAS  Google Scholar 

  26. F. Lambertza, B. Finger, J.K. Holländer, R.E.I. Rath, J. Schropp, Non-cryst. Solids 358, 1962 (2012)

    Article  Google Scholar 

  27. H. Fujiwara, M. Kondo, A. Matsuda, Surf. Sci 497, 333 (2002)

    Article  CAS  Google Scholar 

  28. B. Hoex, J.J.H. Gielis, M.C.M. van de Sanden, W.M.M. Kessels, J. Appl. Phys 104, 113703 (2008)

    Article  Google Scholar 

Download references

Funding

This work was supported by the [Doctoral Fund of Natural Science Foundation of Shandong Province of China] under Grant [ZR2017BEE061] and [Doctoral Fund of Research Foundation of Heze University] under Grant [XY17BS02].

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were all performed by YJ. The first draft of the manuscript was written by YJ and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yuanjian Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y. CO2 plasma treatment to promote crystallinity of p-type emitter layer for the silicon heterojunction solar cells. J Mater Sci: Mater Electron 33, 3670–3675 (2022). https://doi.org/10.1007/s10854-021-07559-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07559-x

Navigation