Skip to main content
Log in

Self-assembly of porous g-C3N4 and montmorillonite: characterization, performance test, and mechanism analysis

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Montmorillonite is successfully attached to the surface of porous graphitic carbon nitride by electrostatic self-assembly method, so that the composite photocatalyst has larger specific surface area and rich pore structure. Through a series of characterization methods such as surface area measurement (BET), photoluminescence spectra, and UV–vis diffuse reflection spectroscopy, it is confirmed that the introduction of montmorillonite is conducive to the separation of photogenerated carriers and holes in graphitic carbon nitride. The photocatalytic degradation of 20 ppm rhodamine B by composite materials only takes 90 min, and it shows the ability to degrade high concentration rhodamine B. After four cycles of regeneration, the degradation rate of rhodamine B by composite materials is still 95.4%. After the combination of porous graphitic carbon nitride and montmorillonite with electrostatic self-assembly, it has the ability to degradation of high concentration dyes, which provides a development idea for the practical application of photocatalytic technology in the field of dye degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. M.L. Rache, A.R. Garcia, H.R. Zea, A.M.T. Silva, L.M. Madeira, J.H. Ramirez, Appl. Catal. B Environ. 146, 192 (2014). https://doi.org/10.1016/j.apcatb.2013.04.028

    Article  CAS  Google Scholar 

  2. C. Yang, W. Xu, Y. Nan et al., J. Colloid Interface Sci. 562, 589 (2020). https://doi.org/10.1016/j.jcis.2019.11.075

    Article  CAS  Google Scholar 

  3. S. Wijetunga, X.-F. Li, C. Jian, J. Hazard. Mater. 177, 792 (2010). https://doi.org/10.1016/j.jhazmat.2009.12.103

    Article  CAS  Google Scholar 

  4. J. Tian, Q. Shao, J. Zhao et al., J. Colloid Interface Sci. 541, 18 (2019). https://doi.org/10.1016/j.jcis.2019.01.069

    Article  CAS  Google Scholar 

  5. L. Wang, G. Huang, L. Zhang et al., J. Energy Chem. 64, 85 (2022). https://doi.org/10.1016/j.jechem.2021.04.053

    Article  Google Scholar 

  6. L. Wang, P. Jin, S. Duan, H. She, J. Huang, Q. Wang, Sci. Bull. 64, 926 (2019). https://doi.org/10.1016/j.scib.2019.05.012

    Article  CAS  Google Scholar 

  7. C. Hu, W.-Z. Hung, M.-S. Wang, P.-J. Lu, Carbon 127, 374 (2018). https://doi.org/10.1016/j.carbon.2017.11.019

    Article  CAS  Google Scholar 

  8. F. Yi, H. Gan, H. Jin et al., Sep. Purif. Technol. (2020). https://doi.org/10.1016/j.seppur.2019.115997

    Article  Google Scholar 

  9. G. Nabi, N. Malik, W. Raza, Inorg. Chem. Commun. (2020). https://doi.org/10.1016/j.inoche.2020.108050

    Article  Google Scholar 

  10. L. Zhou, Y. Tian, J. Lei, L. Wang, Y. Liu, J. Zhang, Catal. Sci. Technol. 8, 2617 (2018). https://doi.org/10.1039/c8cy00351c

    Article  CAS  Google Scholar 

  11. G. Zhang, Z.-A. Lan, X. Wang, Chem. Sci. 8, 5261 (2017). https://doi.org/10.1039/c7sc01747b

    Article  CAS  Google Scholar 

  12. S. Samanta, R. Yadav, A. Kumar, A.K. Sinha, R. Srivastava, Appl. Catal. B Environ. (2019). https://doi.org/10.1016/j.apcatb.2019.118054

    Article  Google Scholar 

  13. Y. Wang, Y. Cao, Y. Liu, P. Yang, Int. J. Hydrogen Energy 45, 16519 (2020). https://doi.org/10.1016/j.ijhydene.2020.04.110

    Article  CAS  Google Scholar 

  14. Y. Chen, X. Wang, J. Phys. Chem. C 122, 3786 (2018). https://doi.org/10.1021/acs.jpcc.7b12496

    Article  CAS  Google Scholar 

  15. F. Raziq, Y. Qu, M. Humayun, A. Zada, H. Yu, L. Jing, Appl. Catal. B Environ. 201, 486 (2017). https://doi.org/10.1016/j.apcatb.2016.08.057

    Article  CAS  Google Scholar 

  16. A. Sudhaik, P. Raizada, P. Shandilya, D.-Y. Jeong, J.-H. Lim, P. Singh, J. Ind. Eng. Chem. 67, 28 (2018). https://doi.org/10.1016/j.jiec.2018.07.007

    Article  CAS  Google Scholar 

  17. P. Kumar, U.K. Thakur, K. Alam et al., Carbon 137, 174 (2018). https://doi.org/10.1016/j.carbon.2018.05.019

    Article  CAS  Google Scholar 

  18. I. Papailias, N. Todorova, T. Giannakopoulou et al., Appl. Catal. B Environ. (2020). https://doi.org/10.1016/j.apcatb.2020.118733

    Article  Google Scholar 

  19. J. Wang, C. Zhang, Y. Shen et al., J. Mater. Chem. A 3, 5126 (2015). https://doi.org/10.1039/c4ta06778a

    Article  CAS  Google Scholar 

  20. L. Luo, A. Zhang, M.J. Janik, K. Li, C. Song, X. Guo, Appl. Surf. Sci. 396, 78 (2017). https://doi.org/10.1016/j.apsusc.2016.10.190

    Article  CAS  Google Scholar 

  21. W. Li, X. Wang, M. Li, S. He, Q. Ma, X. Wang, Appl. Catal. B Environ. (2020). https://doi.org/10.1016/j.apcatb.2019.118384

    Article  Google Scholar 

  22. J. Xiong, G.-F. Xiao, H.-Y. Zeng, C.-R. Chen, D.-S. An, Appl. Clay Sci. (2020). https://doi.org/10.1016/j.clay.2020.105669

    Article  Google Scholar 

  23. T. Chen, D. Yin, F. Zhao et al., New J. Chem. 43, 463 (2019). https://doi.org/10.1039/c8nj04849e

    Article  CAS  Google Scholar 

  24. D. Xu, B. Cheng, W. Wang, C. Jiang, Appl. Catal. B Environ. 231, 368 (2018). https://doi.org/10.1016/j.apcatb.2018.03.036

    Article  CAS  Google Scholar 

  25. H. Zhang, X. Han, H. Yu, Y. Zou, X. Dong, Sep. Purif. Technol. 226, 128 (2019). https://doi.org/10.1016/j.seppur.2019.05.066

    Article  CAS  Google Scholar 

  26. G. Liu, P. Niu, C. Sun et al., J. Am. Chem. Soc. 132, 11642 (2010). https://doi.org/10.1021/ja103798k

    Article  CAS  Google Scholar 

  27. S. Wan, M. Ou, X. Wang et al., Dalton Trans. 48, 12070 (2019). https://doi.org/10.1039/c9dt02507c

    Article  CAS  Google Scholar 

  28. P. Kumar, P. Kar, A.P. Manuel et al., Adv. Opt. Mater. (2020). https://doi.org/10.1002/adom.201901275

    Article  Google Scholar 

  29. X. Lu, H. Wang, S. Zhang, D. Cui, Q. Wang, Solid State Sci. 11, 428 (2009). https://doi.org/10.1016/j.solidstatesciences.2008.07.006

    Article  CAS  Google Scholar 

  30. J. Zhang, F. Guo, X. Wang, Adv. Funct. Mater. 23, 3008 (2013). https://doi.org/10.1002/adfm.201203287

    Article  CAS  Google Scholar 

  31. D. Vidyasagar, V. Kumari, T. Bhoyar, S.S. Umare, Appl. Surf. Sci. (2020). https://doi.org/10.1016/j.apsusc.2020.146661

    Article  Google Scholar 

  32. D. Chen, Y. Du, H. Zhu, Y. Deng, Appl. Clay Sci. 87, 285 (2014). https://doi.org/10.1016/j.clay.2013.11.031

    Article  CAS  Google Scholar 

  33. L. Liu, Y. Shi, B. Yu et al., RSC Adv. 5, 11761 (2015). https://doi.org/10.1039/c4ra12897d

    Article  CAS  Google Scholar 

  34. N. Fajrina, Appl. Surf. Sci. 471, 1053 (2019). https://doi.org/10.1016/j.apsusc.2018.12.076

    Article  CAS  Google Scholar 

  35. X. You, L. Wu, D. Wang et al., Environ. Technol. (2020). https://doi.org/10.1080/09593330.2020.1841303

    Article  Google Scholar 

  36. C. Li, Z. Sun, W. Huang, S. Zheng, J. Taiwan Inst. Chem. Eng. 66, 363 (2016). https://doi.org/10.1016/j.jtice.2016.06.014

    Article  CAS  Google Scholar 

  37. J. Yan, X. Han, J. Qian, J. Liu, X. Dong, F. Xi, J. Mater. Sci. 52, 13091 (2017). https://doi.org/10.1007/s10853-017-1419-5

    Article  CAS  Google Scholar 

  38. Y. Xu, F. Ge, Z. Chen et al., Appl. Surf. Sci. 469, 739 (2019). https://doi.org/10.1016/j.apsusc.2018.11.062

    Article  CAS  Google Scholar 

  39. Y. Dang, Q. Hu, P. He, T. Ren, J. Mol. Struct. (2020). https://doi.org/10.1016/j.molstruc.2020.127961

    Article  Google Scholar 

  40. E.H.C. Lacerda, F.C. Monteiro, J.R. Kloss, S.T. Fujiwara, J. Photochem. Photobiol. A Chem. (2020). https://doi.org/10.1016/j.jphotochem.2019.112084

    Article  Google Scholar 

  41. B. Zhou, M. Waqas, B. Yang et al., Appl. Surf. Sci. (2020). https://doi.org/10.1016/j.apsusc.2019.145004

    Article  Google Scholar 

  42. K. Peng, H. Wang, X. Li et al., Appl. Clay Sci. 175, 86 (2019). https://doi.org/10.1016/j.clay.2019.04.007

    Article  CAS  Google Scholar 

  43. X. Wang, K. Maeda, A. Thomas et al., Nat. Mater. 8, 76 (2009). https://doi.org/10.1038/nmat2317

    Article  CAS  Google Scholar 

  44. H. Tang, R. Wang, C. Zhao et al., Chem. Eng. J. 374, 1064 (2019). https://doi.org/10.1016/j.cej.2019.06.029

    Article  CAS  Google Scholar 

  45. Z. Mo, H. Xu, Z. Chen et al., Appl. Catal. B Environ. 225, 154 (2018). https://doi.org/10.1016/j.apcatb.2017.11.041

    Article  CAS  Google Scholar 

  46. X. She, H. Xu, Y. Xu et al., J. Mater. Chem. A 2, 2563 (2014). https://doi.org/10.1039/c3ta13768f

    Article  CAS  Google Scholar 

  47. J. Jiang, O. Lei, L. Zhu et al., Carbon 80, 213 (2014). https://doi.org/10.1016/j.carbon.2014.08.059

    Article  CAS  Google Scholar 

  48. C.-Q. Xu, Y.-H. Xiao, Y.-X. Yu, W.-D. Zhang, J. Mater. Sci. 53, 409 (2018). https://doi.org/10.1007/s10853-017-1507-6

    Article  CAS  Google Scholar 

  49. M. Ritz, L. Vaculikova, J. Kupkova, E. Plevova, Vib. Spectrosc. 84, 7 (2016). https://doi.org/10.1016/j.vibspec.2016.02.007

    Article  CAS  Google Scholar 

  50. L. Shi, K. Chang, H. Zhang et al., Small 12, 4431 (2016). https://doi.org/10.1002/smll.201601668

    Article  CAS  Google Scholar 

  51. Y. Li, J. Zhan, L. Huang et al., RSC Adv. 4, 11831 (2014). https://doi.org/10.1039/c3ra46818f

    Article  CAS  Google Scholar 

  52. J. Huang, D. Li, R. Li et al., Chem. Eng. J. 374, 242 (2019). https://doi.org/10.1016/j.cej.2019.05.175

    Article  CAS  Google Scholar 

  53. Z. Liu, X. Zhang, Z. Jiang, H.-S. Chen, P. Yang, Int. J. Hydrogen Energy 44, 20042 (2019). https://doi.org/10.1016/j.ijhydene.2019.06.037

    Article  CAS  Google Scholar 

  54. C. Liu, Y. Zhang, F. Dong et al., Appl. Catal. B Environ. 203, 465 (2017). https://doi.org/10.1016/j.apcatb.2016.10.002

    Article  CAS  Google Scholar 

  55. X. Feng, Z. Yu, Y. Sun, M. Shan, R. Long, X. Li, Sep. Purif. Technol. (2021). https://doi.org/10.1016/j.seppur.2021.118606

    Article  Google Scholar 

  56. Y. Zhou, L. Zhang, J. Liu et al., J. Mater. Chem. A 3, 3862 (2015). https://doi.org/10.1039/c4ta05292g

    Article  CAS  Google Scholar 

  57. I. Papailias, T. Giannakopoulou, N. Todorova, D. Demotikali, T. Vaimakis, C. Trapalis, Appl. Surf. Sci. 358, 278 (2015). https://doi.org/10.1016/j.apsusc.2015.08.097

    Article  CAS  Google Scholar 

  58. L. Jiang, X. Yuan, G. Zeng et al., Appl. Catal. B Environ. 221, 715 (2018). https://doi.org/10.1016/j.apcatb.2017.09.059

    Article  CAS  Google Scholar 

  59. H.-J. Li, B.-W. Sun, L. Sui, D.-J. Qian, M. Chen, Phys. Chem. Chem. Phys. 17, 3309 (2015). https://doi.org/10.1039/c4cp05020g

    Article  CAS  Google Scholar 

  60. H. Wang, B. Wang, Y. Bian, L. Dai, ACS Appl. Mater. Interfaces 9, 21730 (2017). https://doi.org/10.1021/acsami.7b02445

    Article  CAS  Google Scholar 

  61. L. Ye, J. Liu, Z. Jiang, T. Peng, L. Zan, Appl. Catal. B Environ. 142, 1 (2013). https://doi.org/10.1016/j.apcatb.2013.04.058

    Article  CAS  Google Scholar 

  62. M. Thommes, K. Kaneko, A.V. Neimark et al., Pure Appl. Chem. 87, 1051 (2015). https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  63. Y. Geng, D. Chen, N. Li et al., Appl. Catal. B Environ. (2021). https://doi.org/10.1016/j.apcatb.2020.119409

    Article  Google Scholar 

  64. Z. Wang, W. Guan, Y. Sun, F. Dong, Y. Zhou, W.-K. Ho, Nanoscale 7, 2471 (2015). https://doi.org/10.1039/c4nr05732e

    Article  CAS  Google Scholar 

  65. R. Ma, S. Zhang, T. Wen et al., Catal. Today 335, 20 (2019). https://doi.org/10.1016/j.cattod.2018.11.016

    Article  CAS  Google Scholar 

  66. L.J. Fang, X.L. Wang, J.J. Zhao et al., Chem. Commun. 52, 14408 (2016). https://doi.org/10.1039/c6cc08187h

    Article  CAS  Google Scholar 

  67. L. Ma, H. Fan, K. Fu et al., ACS Sustain. Chem. Eng. 5, 7093 (2017). https://doi.org/10.1021/acssuschemeng.7b01312

    Article  CAS  Google Scholar 

  68. P. Chen, F. Wang, Z.-F. Chen et al., Appl. Catal. B Environ. 204, 250 (2017). https://doi.org/10.1016/j.apcatb.2016.11.040

    Article  CAS  Google Scholar 

  69. H. Huang, Y. He, X. Li et al., J. Mater. Chem. A 3, 24547 (2015). https://doi.org/10.1039/c5ta07655b

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by Sichuan Youth Science and technology innovation research team project (Grant No. 2020JDTD0018) and Sichuan Science and Technology project (No. 2021YFQ 0046).

Author information

Authors and Affiliations

Authors

Contributions

YB contributed to methodology, writing—original draft, supervision, software, and data curation. MC involved in funding acquisition, investigation, and visualization. YL participated in conceptualization and Investigation. YZ involved in funding acquisition. DG performed supervision. WT took part in methodology and writing—review and editing.

Corresponding author

Correspondence to Yucheng Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 168.7 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, Y., Chen, M., Liu, Y. et al. Self-assembly of porous g-C3N4 and montmorillonite: characterization, performance test, and mechanism analysis. J Mater Sci: Mater Electron 33, 3631–3647 (2022). https://doi.org/10.1007/s10854-021-07556-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07556-0

Navigation