Skip to main content

Advertisement

Log in

Low pressure Cu-Cu bonding using MOD ink-modified Cu particle paste for die-attachment of power semiconductors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Cu-Cu bonding is always conducted at high temperature and high pressure in reductive atmosphere to eliminate the influence caused by oxidation. Herein, a novel low-pressure sinterable Cu nanoparticle (Cu-NPs) paste was developed using Cu Metal Organic Decomposition (MOD) ink as solvent and surface modifier. The Cu MOD ink in paste introduced in Cu nanoparticle paste not only eliminated the surface oxidation of Cu-NPs, but also modified Cu-NPs with Cu atoms due to the thermal decomposition during sintering process. As a result, robust Cu sinter joints for die-attachment could be realized at a low pressure of 0.4 MPa in non-reductive nitrogen atmosphere. Using the paste with 20 wt.% Cuf addition in solvent, a relative high shear strength of 17.1 MPa could be achieved at 300 °C, which is about 3.8 times higher than that sintered without MOD ink (4.5 MPa). When bonding temperature rose to 350 °C, even higher shear strength over 20 MPa was obtained. The bonding strength was comparable to the traditional Pb-5Sn solder alloy, promising its industrial potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig.8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Z. Liu, B. Li, F.C. Lee, Q. Li, IEEE Trans. Ind. Electron. 64, 9114 (2017)

    Article  Google Scholar 

  2. K. Shenai, IEEE Trans Electron Devices 62, e248 (2015)

    Article  Google Scholar 

  3. F. Roccaforte, P. Fiorenza, G. Greco, R. Lo Nigro, F. Giannazzo, F. Iucolano, M. Saggio, Microelectron. Eng. 187, e66 (2018)

    Article  Google Scholar 

  4. M. Shur, Solid-State Electron. 155, 65 (2019)

    Article  CAS  Google Scholar 

  5. A.Q. Huang 2016 IEEE Int Electron Devices Meet pp 20.1. 1

  6. H. Zhang, Y. Gao, J. Jiu, K. Suganuma, J. Alloys Compd. 696, 123 (2017)

    Article  CAS  Google Scholar 

  7. H. Zhang, C. Hen, J. Jiu, S. Nagao, K. Suganuma, J. Mater. Sci.: Mater. Electron. 29, 8854 (2018)

    CAS  Google Scholar 

  8. Z. Zhang, C. Chen, Y. Yang, H. Zhang, D. Kim, T. Sugahara, S. Nagao, K. Suganuma, J. Alloys Compd. 780, 435 (2019)

    Article  CAS  Google Scholar 

  9. S. Zhang, Q. Wang, T. Lin, P. Zhang, P. He, K.-W. Paik, J. Manuf. Processes. 62, 546 (2021)

    Article  Google Scholar 

  10. D. Yamagiwa, T. Matsuda, H. Furusawa, K. Sato, H. Tatsumi, T. Sano, Y. Kashiba, A. Hirose, J. Mater. Sci.: Mater. Electron. 32, 19031 (2021)

    CAS  Google Scholar 

  11. Y. Zuo, S. Carter-Searjeant, M. Green, L. Mills, S.H. Mannan, Mater. Lett. 276, e128260 (2020)

    Article  Google Scholar 

  12. Y. Mou, Y. Peng, Y.R. Zhang, H. Cheng, M.X. Chen, Mater. Lett. 227, 179 (2018)

    Article  CAS  Google Scholar 

  13. Y. Kobayashi, T. Shirochi, Y. Yasuda, T. Morita, J. Int. Adhes. Adhes. 33, 50 (2012)

    Article  CAS  Google Scholar 

  14. Jo. J.-L, Anai. K, Yamauchi. S, Hattori. T, Sakaue. T 2020 IEEE Electron. Compon. Technol. Conf. pp 749

  15. H. Nishikawa, T. Hirano, T. Takemoto, N. Terada, Open Surface Science Journal 3, 60 (2011)

    Article  CAS  Google Scholar 

  16. J.-W. Yoon, J.-H. Back, Materials. 11(11), e2105 (2018)

    Article  Google Scholar 

  17. H. Nishikawa, X. Liu, S. He, Int. Microelectron Assem Packag Soc. 2017, e000202 (2017)

    Google Scholar 

  18. Y. Farraj, A. Smooha, A. Kamyshny, S. Magdassi, A.C.S. Appl, Mater. Interfaces. 9, 8766 (2017)

    Article  CAS  Google Scholar 

  19. Y. Farraj, M. Grouchko, S. Magdassi, Chem. Commun. 51, 1587 (2015)

    Article  CAS  Google Scholar 

  20. K.-M. Huang., H. Tsukamoto, Y. Yong, H.-L. Chiu, N. Mai Thanh, T. Yonezawa, Y.-C. Liao 2017 RSC Adv. 7: e25095

  21. S. Kang, K. Tasaka, J.H. Lee, A. Yabuki, Chem. Phys. Lett. 763, e138248 (2021)

    Article  Google Scholar 

  22. A. Yabuki, S. Kawahara, S. Kang, I.W. Fathona, J. Mater. Sci. Eng. B. 262, e114743 (2020)

    Article  Google Scholar 

  23. W. Li, H. Zhang, Y. Gao, J. Jiu, C.-F, Li, C. Chen, D. Hu, Y. Goya, Y. Wang, H. Koga, S. Nagao, K. Suganuma 2017 J. Mater. Chem. C. 5: e1155

  24. E. Ide, A. Hirose, K.F. Kobayashi, Mater. Trans. 47, 211 (2006)

    Article  CAS  Google Scholar 

  25. Y. Shi, W. Fang, Z. Xia, Y. Lei, F. Guo, X. Li, J. Mater. Sci.: Mater. Electron. 21, 875 (2010)

    CAS  Google Scholar 

  26. Y. Gao, W. Li, C. Chen, H. Zhang, J. Jiu, C.-F. Li, S. Nagao, K. Suganuma, Mater. Des. 160, 1265 (2018)

    Article  CAS  Google Scholar 

  27. Y. Dong, Z. Lin, X. Li, Q. Zhu, J.-G. Li, X. Sun, J. Mater. Chem. C. 6, 6406 (2018)

    Article  CAS  Google Scholar 

  28. K.-M. Huang, H. Tsukamoto, Y. Yong, H.-L. Chiu, N. Mai Thanh, T. Yonezawa, Y.-C. Liao 2017 RSC Adv. 7: e25095

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi-Quan Liu or Yang Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Xiao, Yb., Liu, ZQ. et al. Low pressure Cu-Cu bonding using MOD ink-modified Cu particle paste for die-attachment of power semiconductors. J Mater Sci: Mater Electron 33, 3576–3585 (2022). https://doi.org/10.1007/s10854-021-07551-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07551-5

Navigation