Skip to main content
Log in

Effect of growth temperature on the morphology control and optical behavior of monolayer MoS2 on SiO2 substrate

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Chemical vapor deposition (CVD) is a promising method for producing high-quality two-dimensional (2D) transition metal dichalcogenides (TMDs) over large area. In this paper, we report the effect of temperature on the shape evolution of monolayer-thick molybdenum disulfide (MoS2) grown by CVD on SiO2/Si substrate. As in our previous study (ref. 22), the substrate is placed slightly upstream to the Mo source on a barrier where the vapor concentration is optimum for a homogeneous MoS2 formation. Three distinct grain shapes (equilateral triangle, edge-curved triangle, and circle) evolved as a result of change in growth temperature from 725–775 °C. Circular MoS2 grains, emerged due to substrate (SiO2/Si) influence at a growth temperature of 775 °C, exhibited strong photoluminescence compared to other shapes. We also demonstrated formation of continuous monolayer MoS2 by prolonging the growth duration. The findings of the present study provide insight into the nucleation and growth kinetics of MoS2 on SiO2/Si substrate under the influence of growth temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K.F. Mak, J. Shan, Nat. Photonics 10, 216 (2016)

    Article  CAS  Google Scholar 

  2. Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Nat. Nanotechnol. 7, 699 (2012)

    Article  CAS  Google Scholar 

  3. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.Y. Chim, G. Galli, F. Wang, Nano Lett. 10, 1271 (2010)

    Article  CAS  Google Scholar 

  4. K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Physical Review Letters 105, e136805 (2010)

    Article  Google Scholar 

  5. K.F. Mak, K. He, C. Lee, G.H. Lee, J. Hone, T.F. Heinz, J. Shan, Nat. Mater. 12, 207 (2013)

    Article  CAS  Google Scholar 

  6. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Nat. Nanotechnol. 6, 147 (2011)

    Article  CAS  Google Scholar 

  7. Y.H. Lee, X.Q. Zhang, W. Zhang, M.T. Chang, C. Te Lin, K. Di Chang, Y.C. Yu, J.T.W. Wang, C.S. Chang, L.J. Li, T.W. Lin, Adv. Mater. 24, 2320 (2012)

    Article  CAS  Google Scholar 

  8. Y. Zhan, Z. Liu, S. Najmaei, P.M. Ajayan, J. Lou, Small 8, 966 (2012)

    Article  CAS  Google Scholar 

  9. S. Wang, Y. Rong, Y. Fan, M. Pacios, H. Bhaskaran, K. He, J.H. Warner, Chem. Mater. 26, 6371 (2014)

    Article  CAS  Google Scholar 

  10. W. Xu, S. Li, S. Zhou, J.K. Lee, S. Wang, S.G. Sarwat, X. Wang, H. Bhaskaran, M. Pasta, J.H. Warner, ACS Appl. Mater. Interfaces. 10, 4630 (2018)

    Article  CAS  Google Scholar 

  11. I. Bilgin, F. Liu, A. Vargas, A. Winchester, M.K.L. Man, M. Upmanyu, K.M. Dani, G. Gupta, S. Talapatra, A.D. Mohite, S. Kar, ACS Nano 9, 8822 (2015)

    Article  CAS  Google Scholar 

  12. J. Chen, W. Tang, B. Tian, B. Liu, X. Zhao, Y. Liu, T. Ren, W. Liu, D. Geng, H.Y. Jeong, H.S. Shin, W. Zhou, K.P. Loh, Advanced Science 3, 1500033 (2016)

    Article  Google Scholar 

  13. H.J. Choi, Y.S. Jung, S.M. Lee, S. Kang, D. Seo, H. Kim, H.J. Choi, G.H. Lee, Y.S. Cho, Cryst. Growth Des. 20, 2698 (2020)

    Article  CAS  Google Scholar 

  14. J. You, M.D. Hossain, Z. Luo, Nano Convergence 5, 1 (2018)

    Article  Google Scholar 

  15. Y. Shi, W. Zhou, A.Y. Lu, W. Fang, Y.H. Lee, A.L. Hsu, S.M. Kim, K.K. Kim, H.Y. Yang, L.J. Li, J.C. Idrobo, J. Kong, Nano Lett. 12, 2784 (2012)

    Article  CAS  Google Scholar 

  16. S. Najmaei, Z. Liu, W. Zhou, X. Zou, G. Shi, S. Lei, B.I. Yakobson, J.C. Idrobo, P.M. Ajayan, J. Lou, Nat. Mater. 12, 754 (2013)

    Article  CAS  Google Scholar 

  17. A.M. Van Der Zande, P.Y. Huang, D.A. Chenet, T.C. Berkelbach, Y. You, G.H. Lee, T.F. Heinz, D.R. Reichman, D.A. Muller, J.C. Hone, Nat. Mater. 12, 554 (2013)

    Article  Google Scholar 

  18. J. Wang, T. Li, Q. Wang, W. Wang, R. Shi, N. Wang, A. Amini, C. Cheng, Mater. Today Advances 8, e100098 (2020)

    Article  Google Scholar 

  19. S. Xie, M. Xu, T. Liang, G. Huang, S. Wang, G. Xue, N. Meng, Y. Xu, H. Chen, X. Ma, D. Yang, Nanoscale 8, 219 (2016)

    Article  CAS  Google Scholar 

  20. J. Sitek, J. Plocharski, I. Pasternak, A.P. Gertych, C. Mcaleese, B.R. Conran, M. Zdrojek, W. Strupinski, ACS Appl. Mater. Interfaces. 12, 45101 (2020)

    Article  CAS  Google Scholar 

  21. L.E. Jiménez-Ramírez, E. Muñoz-sandoval, Nanotechnology 32, e155605 (2021)

    Article  Google Scholar 

  22. S. Durairaj, P. Krishnamoorthy, N. Raveendran, B.D. Ryu, C.H. Hong, T.H. Seo, S. Chandramohan, Nanoscale Advances 2, 4106 (2020)

    Article  CAS  Google Scholar 

  23. D. Cao, T. Shen, P. Liang, X. Chen, H. Shu, J. Phys. Chem. C 119, 4294 (2015)

    Article  CAS  Google Scholar 

  24. R. Shahzad, T.W. Kim, S.W. Kang, Thin Solid Films 641, 79 (2017)

    Article  CAS  Google Scholar 

  25. H. Liu, Y. Zhu, Q. Meng, X. Lu, S. Kong, Z. Huang, Nano Res. 10, 643 (2016)

    Article  Google Scholar 

  26. X. Yang, Y. Wang, J. Zhou, Z. Liu, J. Phys. D: Appl. Phys. 50, e164002 (2017)

    Article  Google Scholar 

  27. J.J. De Yoreo, Rev. Mineral. Geochem. 54, 57 (2003)

    Article  Google Scholar 

  28. H. Nan, Z. Wang, W. Wang, Z. Liang, Y. Lu, Q. Chen, D. He, P. Tan, F. Miao, X. Wang, J. Wang, Z. Ni, ACS Nano 8, 5738 (2014)

    Article  CAS  Google Scholar 

  29. N. Mao, Y. Chen, D. Liu, J. Zhang, L. Xie, Small 9, 1312 (2013)

    Article  CAS  Google Scholar 

  30. S. Hao, B. Yang, Y. Gao, Appl. Phys. Lett. 110, e153105 (2017)

    Article  Google Scholar 

  31. R. Sahu, D. Radhakrishnan, B. Vishal, D.S. Negi, A. Sil, C. Narayana, R. Datta, J. Cryst. Growth 470, 51 (2017)

    Article  CAS  Google Scholar 

  32. H.J. Conley, B. Wang, J.I. Ziegler, R.F. Haglund Jr., S.T. Pantelides, K.I. Bolotin, Nano Lett. 13, 3626 (2013)

    Article  CAS  Google Scholar 

  33. W.H. Chae, J.D. Cain, E.D. Hanson, A.A. Murthy, V.P. Dravid, Appl. Phys. Lett. 111, e143106 (2017)

    Article  Google Scholar 

  34. J. Pető, T. Ollár, P. Vancsó, Z.I. Popov, G.Z. Magda, G. Dobrik, C. Hwang, P.B. Sorokin, L. Tapasztó, Nat. Chem. 10, 1246 (2018)

    Article  Google Scholar 

  35. H. Ogura, M. Kaneda, Y. Nakanishi, Y. Nonoguchi, J. Pu, M. Ohfuchi, T. Irisawa, H.E. Lim, T. Endo, K. Yanagi, T. Takenobu, Nanoscale 13, 8784 (2021)

    Article  CAS  Google Scholar 

  36. Xiaoxu Wei, Yu. Zhihao, Hu. Fengrui, Ying Cheng, Yu. Linwei, Xiaoyong Wang, Min Xiao, Junzhuan Wang, Xinran Wang, Yi. Shi, Aip Advances 4, e123004 (2014)

    Article  Google Scholar 

  37. Santhosh Durairaj, Krishnamoorthy Ponnusamy, Nitin Babu Shinde, Senthil Kumar Eswaran, Vijayshankar Asokan, Jong Bae Park, S. Chandramohan, Cryst. Growth Des. 21, 6793 (2021)

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the Science and Engineering Research Board, Department of Science and Technology, Government of India, under Research Grant No. CRG/2020/003902. The authors would like to thank SRM Institute of Science and Technology for the generous support to establish micro-Raman spectroscopy, Transmission Electron Microscopy (TEM), and Scanning Electron Microscopy (SEM) facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Chandramohan.

Ethics declarations

Conflict of interest

The author declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponnusamy, K., Durairaj, S. & Chandramohan, S. Effect of growth temperature on the morphology control and optical behavior of monolayer MoS2 on SiO2 substrate. J Mater Sci: Mater Electron 33, 9549–9557 (2022). https://doi.org/10.1007/s10854-021-07547-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07547-1

Navigation