Skip to main content
Log in

Enhanced trimethylamine gas-sensing performance of CeO2 nanoparticles-decorated MoO3 nanorods

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The MoO3 nanorods decorated with CeO2 were successfully synthesized by a two-step hydrothermal method, and the microstructure and morphology of CeO2/MoO3 were determined by XRD, XPS, SEM, and TEM. It can be confirmed by SEM that the CeO2 nanoparticles of uniform size were successfully compounded with MoO3 nanorods. According to the gas sensitivity test results, the response value of the CeO2/MoO3 sensors to trimethylamine gas has been enhanced by about 20 times, and the excellent catalytic performance of CeO2 and the conversion of the oxidation state of Ce ions have played a vital role. The analysis of XPS spectrum reveals the effect of the conversion of Ce3+ ions and Ce4+ ions on the enhancement of gas sensitivity. In addition, the gas-sensing mechanism of CeO2/MoO3 is discussed based on the change of resistance value, which shows the great potential of CeO2 in the field of gas sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. P.P. Li, C.Y. Cao, Q.K. Shen, B. Bai, H.Q. Jin, J. Yu, W.M. Chen, W.G. Song, Cr-doped NiO nanoparticles as selective and stable gas sensor for ppb-level detection of benzyl mercaptan. Sens. Actuators B Chem. 339, 129886 (2021)

    Article  CAS  Google Scholar 

  2. G.L. Lei, C.M. Lou, X.H. Liu, J.Y. Xie, Z.S. Li, W. Zheng, J. Zhang, Thin films of tungsten oxide materials for advanced gas sensors. Sens. Actuators B Chem. 341, 129996 (2021)

    Article  CAS  Google Scholar 

  3. F. Xu, C.T. Zhou, H.P. Ho, A rule for operation temperature selection of a conductometric VOC gas sensor based on ZnO nanotetrapods. J. Alloys Compd. 858, 158294 (2021)

    Article  CAS  Google Scholar 

  4. D.S. Li, G. Liu, Q. Zhang, M.J. Qu, Y.Q. Fu, Q.J. Liu, J. Xie, Virtual sensor array based on MXene for selective detections of VOCs. Sens. Actuators B Chem. 331, 129414 (2021)

    Article  CAS  Google Scholar 

  5. S.J. Deng, X. Liu, N. Chen, D.Y. Deng, X.C. Xiao, Y.D. Wang, A highly sensitive VOC gas sensor using p-type mesoporous Co3O4 nanosheets prepared by a facile chemical coprecipitation method. Sens. Actuators B Chem. 233, 615–623 (2016)

    Article  CAS  Google Scholar 

  6. W. Chen, F.F. Deng, M. Xu, J. Wang, Z.B. Wei, Y.W. Wang, GO/Cu2O nanocomposite based QCM gas sensor for trimethylamine detection under low concentrations. Sens. Actuators B Chem. 270, 498–504 (2021)

    Google Scholar 

  7. P.M. Perillo, D.F. Rodríguez, Low temperature trimethylamine flexible gas sensor based on TiO2 membrane nanotubes. J. Alloys Compd. 657, 765–769 (2016)

    Article  CAS  Google Scholar 

  8. H.Y. Li, L. Huang, X.X. Wang, C.S. Lee, J.W. Yoon, J. Zhou, X. Guo, J.H. Lee, Molybdenum trioxide nanopaper as a dual gas sensor for detecting trimethylamine and hydrogen sulfide. RSC Adv. 7, 3680–3685 (2017)

    Article  CAS  Google Scholar 

  9. T.Y. Yang, L.Y. Du, C.B. Zhai, Z.F. Li, Q. Zhao, Y. Luo, D.J. Xing, M.Z. Zhang, Ultrafast response and recovery trimethylamine sensor based on α-Fe2O3 snowflake-like hierarchical architectures. J. Alloys Compd. 718, 396–404 (2017)

    Article  CAS  Google Scholar 

  10. C. Zheng, C. Zhang, L.F. He, K. Zhang, J. Zhang, L. Jin, A.M. Asiri, K.A. Alamry, X.F. Chu, ZnFe2O4/ZnO nanosheets assembled microspheres for high performance trimethylamine gas sensing. J. Alloys Compd. 849, 156461 (2020)

    Article  CAS  Google Scholar 

  11. D. Meng, D.Y. Liu, G.S. Wang, Y.B. Shen, X.G. San, J.P. Si, F.L. Meng, In-situ growth of ordered Pd-doped ZnO nanorod arrays on ceramic tube with enhanced trimethylamine sensing performance. Appl. Surf. Sci. 463, 348–356 (2019)

    Article  CAS  Google Scholar 

  12. D.M. An, N. Liu, H.F. Zhang, Q.F. Sun, C. Li, Y. Li, Q.L. Zhang, Y.Q. Lu, Enhanced n-butanol sensing performance of SnO2-based gas sensors by doping In2O3 via co-precipitation method. Sens. Actuators B Chem. 340, 129944 (2021)

    Article  CAS  Google Scholar 

  13. X.J. Liu, K.R. Zhao, X.L. Sun, C. Zhang, X.P. Duan, P.Y. Hou, G. Zhao, S.W. Zhang, H.C. Yang, R.Y. Cao, X.J. Xu, Rational design of sensitivity enhanced and stability improved TEA gas sensor assembled with Pd nanoparticles-functionalized In2O3 composites. Sens. Actuators B Chem. 285, 1–10 (2019)

    Article  CAS  Google Scholar 

  14. S.H. Lu, Y.Z. Zhang, J.Y. Liu, H.Y. Li, Z.X. Hu, X. Luo, N.B. Gao, B. Zhang, J.J. Jiang, A.H. Zhong, J.T. Luo, H. Liu, Sensitive H2 gas sensors based on SnO2 nanowires. Sens. Actuators B Chem. 345, 13034 (2021)

    Article  Google Scholar 

  15. J.Q. Bao, Z.Y. Zhang, Y.G. Zheng, H2S sensor based on two-dimensional MoO3 nanoflakes: Transition between sulfidation and oxidation. Sens. Actuators B: Chem. 345, 130408 (2021)

    Article  CAS  Google Scholar 

  16. H. Yu, C. Wang, F.Y. Meng, J.G. Liang, H.S. Kashan, K.K. Adhikari, L. Wang, E.S. Kim, N.Y. Kim, Design and analysis of ultrafast and high-sensitivity microwave transduction humidity sensor based on belt-shaped MoO3 nanomaterial. Sens. Actuators B Chem. 304, 127138 (2020)

    Article  CAS  Google Scholar 

  17. S. Zhang, P. Song, J. Zhang, Z.Q. Li, Z.X. Yang, Q. Wang, In2O3-functionalized MoO3 heterostructure nanorods with improved gas-sensing performance. RSC Adv. 56, 50423–50430 (2016)

    Article  Google Scholar 

  18. D. Wang, Y. Cheng, K.C. Wan, J.L. Yang, J.C. Xu, X.Y. Wang, High efficiency xylene detection based on porous MoO3 nanosheets. Vacuum. 179, 109487 (2020)

    Article  CAS  Google Scholar 

  19. L.L. Sui, Y.M. Xu, X.F. Zhang, X.L. Cheng, S. Gao, H. Zhao, Z. Cai, L.H. Huo, Construction of three-dimensional flower-like α-MoO3 with hierarchical structure for highly selective triethylamine sensor. Sens. Actuators B Chem. 208, 406–414 (2015)

    Article  CAS  Google Scholar 

  20. X.X. Fu, P.Y. Yang, X.F. Xiao, D. Zhou, R. Huang, X.H. Zhang, F. Cao, J. Xiong, Y.M. Hu, Y.F. Tu, Y.N. Zou, Z. Wang, H.S. Gu, Ultra-fast and highly selective room-temperature formaldehyde gas sensing of Pt-decorated MoO3 nanorods. J. Alloys Compd. 797, 666–675 (2019)

    Article  CAS  Google Scholar 

  21. F.D. Qu, X.X. Zhou, B.X. Zhang, S.D. Zhang, C.J. Jiang, S.P. Ruan, M.H. Yang, Fe2O3 nanoparticles-decorated MoO3 nanorods for enhanced chemiresistive gas sensing. J. Alloys Compd. 782, 672–678 (2019)

    Article  CAS  Google Scholar 

  22. J.Q. Wang, Z.J. Li, S. Zhang, S.N. Yan, B.B. Cao, Z.G. Wang, Y.Q. Fu, Enhanced NH3 gas-sensing performance of silica modified CeO2 nanostructure based sensors. Sens. Actuators B Chem. 255, 862–870 (2018)

    Article  CAS  Google Scholar 

  23. H. Bi, L.X. Zhang, Y. Xing, P. Zhang, J.J. Chen, J. Yin, L.J. Bie, Morphology-controlled synthesis of CeO2 nanocrystals and their facet-dependent gas sensing properties. Sens. Actuators B Chem. 330, 129374 (2021)

    Article  CAS  Google Scholar 

  24. G.Z. Hui, M.Y. Zhu, X.L. Yang, J.J. Liu, G.F. Pan, Z.Y. Wang, Highly sensitive ethanol gas sensor based on CeO2/ZnO binary heterojunction composite. Mater Lett. 278, 128453 (2020)

    Article  CAS  Google Scholar 

  25. J.Y. Liu, M.J. Dai, T.S. Wang, P. Sun, X.S. Liang, G.Y. Lu, K. Shimanoe, N. Yamazoe, Enhanced gas sensing properties of SnO2 hollow spheres decorated with CeO2 nanoparticles heterostructure composite materials. ACS Appl. Mater. Inter. 8, 6669 (2016)

    Article  CAS  Google Scholar 

  26. P. Hao, G.M. Qu, P. Song, Z.X. Yang, Q. Wang, Synthesis of Ba-doped porous LaFeO3 microspheres with perovskite structure for rapid detection of ethanol gas. Rare Met. 40, 1651–1661 (2021)

    Article  CAS  Google Scholar 

  27. Q. Wei, J. Sun, P. Song, J. Li, Z.X. Yang, Q. Wang, MOF-derived α-Fe2O3 porous spindle combined with reduced graphene oxide for improvement of TEA sensing performance. Sens. Actuators B Chem. 304, 127306 (2020)

    Article  CAS  Google Scholar 

  28. M. Liu, Z.Y. Wang, P. Song, Z.X. Yang, Q. Wang, Flexible MXene/rGO/CuO hybrid aerogels for high performance acetone sensing at room temperature. Sens. Actuators B Chem. 340, 129946 (2021)

    Article  CAS  Google Scholar 

  29. R. Xu, L.X. Zhang, M.W. Li, Y.Y. Yin, J. Yin, M.Y. Zhu, J.J. Chen, Y. Wang, L.J. Bie, Ultrathin SnO2 nanosheets with dominant high-energy 001 facets for low temperature formaldehyde gas sensor. Sens. Actuators B Chem. 289, 186–194 (2019)

    Article  CAS  Google Scholar 

  30. S.L. Yang, G. Lei, L. Tan, H.X. Xu, J. Xiong, Z. Wang, H.H. Gu, Fe-doped MoO3 nanoribbons for high-performance hydrogen sensor at room temperature. J. Alloys Compd. 877, 160200 (2021)

    Article  CAS  Google Scholar 

  31. W.H. Jiang, L.L. Meng, S.F. Zhang, X.H. Chuai, Z.J. Zhou, C.H. Hu, P. Sun, F.M. Liu, X. Yan, G.Y. Lu, Design of highly sensitive and selective xylene gas sensor based on Ni-doped MoO3 nano-pompon. Sens. Actuators B Chem. 299, 126888 (2019)

    Article  CAS  Google Scholar 

  32. N. Jayababu, M. Poloju, J. Shruthi, M.V.R. Reddy, NiO decorated CeO2 nanostructures as room temperature isopropanol gas sensors. RSC Adv. 24, 13765–13775 (2019)

    Article  Google Scholar 

  33. K.P. Yuan, C.Y. Wang, L.Y. Zhu, Q. Cao, J.H. Yang, X.X. Li, W. Huang, Y.Y. Wang, H.L. Lu, D.W. Zhang, Fabrication of a micro-electromechanical system-based acetone gas sensor using CeO2 nanodot-decorated WO3 nanowires. ACS Appl. Mater. Inter. 12, 14095–14104 (2020)

    Article  CAS  Google Scholar 

  34. P.P. Li, B. Wang, C. Qin, C. Han, L. Sun, Y.D. Wang, Band-gap-tunable CeO2 nanoparticles for room-temperature NH3 gas sensors. Ceram. Int. 46, 19232–19240 (2020)

    Article  CAS  Google Scholar 

  35. Y. Yang, C.G. Tian, L. Sun, R.J. Lu, W. Zhou, K.Y. Shi, K. Kan, J.C. Wang, H.G. Fu, Growth of small sized CeO2 particles in the interlayers of expanded graphite for high-performance room temperature NOx gas sensors. J. Mater. Chem. A. 1, 12742 (2013)

    Article  CAS  Google Scholar 

  36. J.F. Chao, Y.H. Chen, S.M. Xing, D.L. Zhang, W.L. Shen, Facile fabrication of ZnO/C nanoporous fibers and ZnO hollow spheres for high performance gas sensor. Sens. Actuators B Chem. 298, 126927 (2019)

    Article  CAS  Google Scholar 

  37. S. Zhang, P. Song, J. Zhang, H.H. Yan, J. Li, Z.X. Yang, Q. Wang, Highly sensitive detection of acetone using mesoporous In2O3 nanospheres decorated with Au nanoparticles. Sens. Actuators B 242, 983–993 (2017)

    Article  CAS  Google Scholar 

  38. J. Hua, Y.J. Sun, Y. Xue, M. Zhang, P.W. Li, K. Lian, S. Zhuiykov, W.D. Zhang, Y. Chen, Highly sensitive and ultra-fast gas sensor based on CeO2-loaded In2O3 hollow spheres for ppb-level hydrogen detection. Sens. Actuators B Chem. 257, 124–135 (2018)

    Article  Google Scholar 

  39. P. Song, Q. Wang, Z. Zhang, Z.X. Yang, Synthesis and gas sensing properties of biomorphic LaFeO3 hollow fibers templated from cotton. Sens. Actuators B 147, 248–254 (2010)

    Article  CAS  Google Scholar 

  40. J.W. Ma, H.Q. Fan, W.M. Zhang, J.N. Sui, C. Wang, M.C. Zhang, N. Zhao, A.K. Yadav, W.J. Wang, W.Q. Dong, S.R. Wang, High sensitivity and ultra-low detection limit of chlorine gas sensor based on In2O3 nanosheets by a simple template method. Sens. Actuators B Chem. 305, 127456 (2020)

    Article  CAS  Google Scholar 

  41. C.H. Kwak, H.S. Woo, J.H. Lee, Selective trimethylamine sensors using Cr2O3-decorated SnO2 nanowires. Sens. Actuators B Chem. 204, 231–238 (2014)

    Article  CAS  Google Scholar 

  42. L.K. Liu, S. Fu, X. Lv, L.L. Yue, L. Fan, H.T. Yu, X.L. Gao, W.B. Zhu, W. Zhang, X. Li, W.Q. Zhu, A gas sensor with Fe2O3 nanospheres based on trimethylamine detection for the rapid assessment of spoilage degree in fish. Front. Bioeng. Biotech. 8, 567584 (2020)

    Article  Google Scholar 

  43. W.J. Yan, H.S. Xu, M. Ling, S.Y. Zhou, T. Qiu, Y.J. Deng, Z.D. Zhao, E. Zhang, MOF-derived porous hollow Co3O4@ZnO cages for high-performance MEMS trimethylamine sensors. ACS sens. 6, 2613–2621 (2021)

    Article  CAS  Google Scholar 

  44. S. Yang, Y.L. Liu, W. Chen, W. Jin, J. Zhou, H. Zhang, G.S. Zakharovad, High sensitivity and good selectivity of ultralong MoO3 nanobelts for trimethylamine gas. Sens. Actuators B Chem. 226, 478–485 (2016)

    Article  CAS  Google Scholar 

  45. Z. Lou, F. Li, J.N. Deng, L.L. Wang, T. Zhang, Branch-like hierarchical heterostructure (α-Fe2O3/TiO2): a novel sensing material for trimethylamine gas sensor. ACS Appl. Mater. Inter. 5, 12310–12316 (2013)

    Article  CAS  Google Scholar 

  46. A. Umar, T. Almas, A.A. Ibrahim, R. Kumar, M.S. AlAssiri, S. Baskoutas, M.S. Akhtar, An efficient chemical sensor based on CeO2 nanoparticles for the detection of acetylacetone chemical. J. Electroanal. Chem. 864, 114089 (2020)

    Article  CAS  Google Scholar 

  47. K.M. Zhu, S.Y. Ma, Y. Tie, Q.X. Zhang, W.Q. Wang, S.T. Pei, X.L. Xu, Highly sensitive formaldehyde gas sensors based on Y-doped SnO2 hierarchical flower-shaped nanostructures. J. Alloys Compd. 792, 938–944 (2019)

    Article  CAS  Google Scholar 

  48. L. Wang, S.Y. Ma, X.L. Xu, J.P. Li, T.T. Yang, P.F. Cao, P.D. Yun, S.Y. Wang, T. Han, Oxygen vacancy-based Tb-doped SnO2 nanotubes as an ultra-sensitive sensor for ethanol detection. Sens. Actuators B Chem. 344, !30111 (2021)

    Article  Google Scholar 

  49. Z. Shen, X.D. Zhang, R.N. Mi, M. Liu, Y. Chen, C. Chen, S.P. Ruan, On the high response towards TEA of gas sensors based on Ag-loaded 3D porous ZnO microspheres. Sens. Actuators B Chem. 270, 492–499 (2018)

    Article  CAS  Google Scholar 

  50. P. Hao, Z.G. Lin, P. Song, Z.X. Yang, Q. Wang, rGO-wrapped porous LaFeO3 microspheres for high-performance trimethylamine gas sensors. Ceram. Int. 46, 9363–9369 (2020)

    Article  CAS  Google Scholar 

  51. Z.Q. Li, P. Song, Z.X. Yang, Q. Wang, In situ formation of one-dimensional CoMoO4 /MoO3 heterojunction as an effective trimethylamine gas sensor. Ceram. Int. 44, 3364–3370 (2018)

    Article  CAS  Google Scholar 

  52. J. Zhang, P. Song, J. Li, Z.X. Yang, Q. Wang, Template-assisted synthesis of hierarchical MoO3 microboxes and their high gas-sensing performance. Sens. Actuators B 249, 458–466 (2017)

    Article  CAS  Google Scholar 

  53. X.Q. Qiao, Z.W. Zhang, D.F. Hou, D.S. Li, Y.L. Liu, Y.Q. Lan, J. Zhang, P.Y. Feng, X.H. Bu, Tunable MoS2/SnO2 P-N heterojunctions for an efficient trimethylamine gas sensor and 4-nitrophenol reduction catalyst. ACS Sustain. Chem. Eng. 6, 12375–12384 (2018)

    Article  CAS  Google Scholar 

  54. X.F. Chu, J.L. Wang, L.S. Bai, Y.P. Dong, W.Q. Sun, W.B. Zhang, Trimethylamine and ethanol sensing properties of NiGa2O4 nano-materials prepared by co-precipitation method. Sens. Actuators B Chem. 255, 2058–2065 (2018)

    Article  CAS  Google Scholar 

  55. D.Z. Zhang, Z.M. Yang, P. Li, X.Y. Zhou, Ozone gas sensing properties of metal-organic frameworks-derived In2O3 hollow microtubes decorated with ZnO nanoparticles. Sens. Actuators B Chem. 301, 127081 (2019)

    Article  CAS  Google Scholar 

  56. Q. Hu, B.Y. Huang, Y. Li, S.M. Zhang, Y.X. Zhang, X.H. Hua, G. Liu, B.S. Li, J.Y. Zhou, E.Q. Xie, Z.X. Zhang, Methanol gas detection of electrospun CeO2 nanofibers by regulating Ce3+/ Ce4+ mole ratio via Pd doping. Sens. Actuators B: Chem. 307, 127638 (2020)

    Article  Google Scholar 

  57. D.V. Dao, T.D. Nguyen, S.M. Majhi, G. Adilbish, H.J. Lee, Y.T. Yu, I.H. Lee, Ionic liquid-supported synthesis of CeO2 nanoparticles and its enhanced ethanol gas sensing properties. Mater. Chem. Phys. 231, 1–8 (2019)

    Article  Google Scholar 

  58. D.N. Oosthuizen, D.E. Motaung, H.C. Swart, Gas sensors based on CeO2 nanoparticles prepared by chemical precipitation method and their temperature-dependent selectivity towards H2S and NO2 gases. Appl. Surf. Sci. 505, 144356 (2020)

    Article  CAS  Google Scholar 

  59. D. Majumder, S. Roy, Development of Low-ppm CO sensors using pristine CeO2 nanospheres with high surface area. ACS Omega 3, 4433–4440 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (No. 61102006) and Natural Science Foundation of Shandong Province, China (Nos. ZR2018LE006 and ZR2015EM019).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Song or Qi Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Zheng, Y., Song, P. et al. Enhanced trimethylamine gas-sensing performance of CeO2 nanoparticles-decorated MoO3 nanorods. J Mater Sci: Mater Electron 33, 3453–3464 (2022). https://doi.org/10.1007/s10854-021-07539-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07539-1

Navigation