Skip to main content
Log in

Room temperature synthesis and ammonia sensing of monodispersed hierarchical 1 and 3-dimensional Co3O4 nanostructures: switching from p to n-type sensing

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This study report on a sonochemical synthesis of 1- and 3-dimensional hierarchical nanostructured cobalt oxide systems (Co3O4) and their application in ammonia sensing at room temperature (i.e., 30 °C). The Co3O4 nanostructures were synthesized via a room temperature-assisted precipitation and subsequent thermal treatment of the oxalate precursor. The resulted nanostructures were characterized by SEM, XRD, TEM, FTIR spectroscopy, BET, and TGA/DTA. The synthesis mechanism was proposed on the basis of morphology analyzed at various stages of the particle growth. It was observed that the final hierarchical microspheres structure resulted from the self-aggregation of the initially formed nanorods. The microspheres and nanorods were used as efficient room temperature gas sensors for ammonia detection in the concentration range of 0.01–500 ppm. The nanorod-based sensor showed an unusual n-type sensing behavior to ammonia in a temperature range of 30–300 °C. This transition of p to n-type was correlated to the formation of successive layers of physisorbed water molecules at the surface of the synthesized Co3O4. However, in case of the microspheres, the n-type behavior and superior sensitivity were observed at 30 °C followed by a negligible response up to 200 °C, while the intrinsic p-type behavior was recorded at an elevated temperature (200–300 °C). The observed unusual sensing performance may be associated with the crystallographic nature and lattice strain in the material structures. Additionally, the large specific surface area and the change in crystalline structure with temperature made the as prepared novel hierarchical Co3O4 structures a distinctive material for sensing ammonia at 30 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The datasets generated or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Y. Gui, L. Yang, K. Tian, H. Zhang, S. Fang, P-type Co3O4 nanoarrays decorated on the surface of n-type flower-like WO3 nanosheets for high-performance gas sensing. Sens. Actuators B Chem. 288, 104–112 (2019). https://doi.org/10.1016/j.snb.2019.02.101

    Article  CAS  Google Scholar 

  2. S. Vladimirova, V. Krivetskiy, M. Rumyantseva, A. Gaskov, N. Mordvinova, O. Lebedev, M. Martyshov, P. Forsh, Co3O4 as p-type material for CO sensing in humid air. Sensors. 17, 2216–2221 (2017)

    Article  Google Scholar 

  3. M. Wang, T. Hou, X. Zhao, H. Yu, H. Ji, Crucial structural effects of porous Co3O4 derived from prussian blue analogue on the enhanced gas sensing performance. Mater. Lett. 242, 83–86 (2019). https://doi.org/10.1016/J.MATLET.2019.01.076

    Article  CAS  Google Scholar 

  4. M. Govindhan, B. Sidhureddy, A. Chen, High-temperature hydrogen gas sensor based on three-dimensional hierarchical-nanostructured nickel–cobalt oxide. ACS Appl. Nano Mater. 1, 6005–6014 (2018). https://doi.org/10.1021/acsanm.8b00835

    Article  CAS  Google Scholar 

  5. C. Su, L. Zhang, Y. Han, X. Chen, S. Wang, M. Zeng, N. Hu, Y. Su, Z. Zhou, H. Wei, Z. Yang, Glucose-assisted synthesis of hierarchical flower-like Co3O4 nanostructures assembled by porous nanosheets for enhanced acetone sensing. Sens. Actuators B Chem. 288, 699–706 (2019). https://doi.org/10.1016/J.SNB.2019.03.004

    Article  CAS  Google Scholar 

  6. Y. Li, N. Luo, G. Sun, B. Zhang, H. Jin, L. Lin, H. Bala, J. Cao, Z. Zhang, Y. Wang, Synthesis of porous nanosheets-assembled ZnO/ZnCo2O4 hierarchical structure for TEA detection. Sens. Actuators B Chem. 287, 199–208 (2019). https://doi.org/10.1016/J.SNB.2019.02.055

    Article  CAS  Google Scholar 

  7. H. Liu, Y. He, K. Nagashima, G. Meng, T. Dai, B. Tong, Z. Deng, S. Wang, N. Zhu, T. Yanagida, X. Fang, Discrimination of VOCs molecules via extracting concealed features from a temperature-modulated p-type NiO sensor. Sens. Actuators B Chem. 293, 342–349 (2019). https://doi.org/10.1016/J.SNB.2019.04.078

    Article  CAS  Google Scholar 

  8. Z. Jin, L.-P. Wang, Y. Zhang, J. Fan, M.-H. Liao, X.-F. Wang, Y. Ding, Highly sensitive and selective ethanol sensors based on porous Co3O4 nanobelts synthesized through a facile wet-chemistry method. J. Nanoparticle Res. 21, 115–121 (2019). https://doi.org/10.1007/s11051-019-4549-7

    Article  CAS  Google Scholar 

  9. B. Sakthivel, G. Nammalvar, Selective ammonia sensor based on copper oxide/reduced graphene oxide nanocomposite. J. Alloys Compd. 788, 422–428 (2019). https://doi.org/10.1016/J.JALLCOM.2019.02.245

    Article  CAS  Google Scholar 

  10. J. Tan, M. Dun, L. Li, J. Zhao, W. Tan, Z. Lin, X. Huang, Synthesis of hollow and hollowed-out Co3O4 microspheres assembled by porous ultrathin nanosheets for ethanol gas sensors: responding and recovering in one second. Sens. Actuators B Chem. 249, 44–52 (2017). https://doi.org/10.1016/J.SNB.2017.04.063

    Article  CAS  Google Scholar 

  11. B.K. Satpathy, A.K. Nayak, C.R. Raj, D. Pradhan, Morphology-dependent charge storage performance of Co3O4 nanostructures in an all-solid-state flexible supercapacitor, New. J. Chem. 43, 15177–15186 (2019). https://doi.org/10.1039/C9NJ03070K

    Article  CAS  Google Scholar 

  12. P.M. Ette, K. Selvakumar, S.M. Senthil Kumar, K. Ramesha, Ordered 1D and 3D mesoporous Co3O4 structures: effect of morphology on Li-ion storage and high rate performance. Electrochim. Acta. 310, 184–194 (2019). https://doi.org/10.1016/J.ELECTACTA.2019.04.105

    Article  CAS  Google Scholar 

  13. U.T. Nakate, P. Patil, S.P. Choudhury, S.N. Kale, Microwave assisted synthesis of Co3O4 and NiO nanoplates and structural, optical, magnetic characterizations. Nano-Struct Nano-Obj. 14, 66–72 (2018). https://doi.org/10.1016/J.NANOSO.2018.01.007

    Article  CAS  Google Scholar 

  14. Y. Bai, J. Dong, Y. Hou, Y. Guo, Y. Liu, Y. Li, X. Han, Z. Huang, Co3O4 @PC derived from ZIF-67 as an efficient catalyst for the selective catalytic reduction of NOx with NH3 at low temperature. Chem. Eng. J. 361, 703–712 (2019). https://doi.org/10.1016/J.CEJ.2018.12.109

    Article  CAS  Google Scholar 

  15. S. Deng, X. Liu, N. Chen, D. Deng, X. Xiao, Y. Wang, A highly sensitive VOC gas sensor using p-type mesoporous Co3O4 nanosheets prepared by a facile chemical coprecipitation method. Sens. Actuators B Chem. 233, 615–623 (2016). https://doi.org/10.1016/J.SNB.2016.04.138

    Article  CAS  Google Scholar 

  16. J.M. Xu, J.P. Cheng, The advances of Co3O4 as gas sensing materials: a review. J. Alloys Compd. 686, 753–768 (2016). https://doi.org/10.1016/J.JALLCOM.2016.06.086

    Article  CAS  Google Scholar 

  17. Z. Li, Z. Lin, N. Wang, J. Wang, W. Liu, K. Sun, Y.Q. Fu, Z. Wang, High precision NH3 sensing using network nano-sheet Co3O4 arrays based sensor at room temperature. Sens. Actuators B Chem. 235, 222–231 (2016). https://doi.org/10.1016/J.SNB.2016.05.063

    Article  CAS  Google Scholar 

  18. U.V. Patil, N.S. Ramgir, N. Karmakar, A. Bhogale, A.K. Debnath, D.K. Aswal, S.K. Gupta, D.C. Kothari, Room temperature ammonia sensor based on copper nanoparticle intercalated polyaniline nanocomposite thin films. Appl. Surf. Sci. 339, 69–74 (2015). https://doi.org/10.1016/J.APSUSC.2015.02.164

    Article  CAS  Google Scholar 

  19. D. Kwak, Y. Lei, R. Maric, Ammonia gas sensors: a comprehensive review. Talanta 204, 713–730 (2019). https://doi.org/10.1016/J.TALANTA.2019.06.034

    Article  CAS  Google Scholar 

  20. R. Sankar Ganesh, E. Durgadevi, M. Navaneethan, V.L. Patil, S. Ponnusamy, C. Muthamizhchelvan, S. Kawasaki, P.S. Patil, Y. Hayakawa, Low temperature ammonia gas sensor based on Mn-doped ZnO nanoparticle decorated microspheres. J. Alloys Compd. 721, 182–190 (2017). https://doi.org/10.1016/J.JALLCOM.2017.05.315

    Article  CAS  Google Scholar 

  21. J. Deng, R. Zhang, L. Wang, Z. Lou, T. Zhang, Enhanced sensing performance of the Co3O4 hierarchical nanorods to NH3 gas. Sens. Actuators B Chem. 209, 449–455 (2015). https://doi.org/10.1016/J.SNB.2014.11.141

    Article  CAS  Google Scholar 

  22. N. Zubair, K. Akhtar, High performance room temperature gas sensor based on novel morphology of zinc oxide nanostructures. Trans. Nonferrous Met. Soc. China. 29, 143–156 (2019). https://doi.org/10.1016/S1003-6326(18)64923-4

    Article  CAS  Google Scholar 

  23. K. Akhtar, I.U. Haq, K. Malook, Gas sensing properties of semiconducting copper oxide nanospheroids. Powder Technol. 283, 505–511 (2015). https://doi.org/10.1016/j.powtec.2015.06.023

    Article  CAS  Google Scholar 

  24. J. Camargo et al., Controlled synthesis: nucleation and growth in solution. Met. Nanostruct. 28, 49–74 (2015). https://doi.org/10.1007/978-3-319-11304-3_2

    Article  Google Scholar 

  25. F. Mohandes, M. Salavati-Niasari, Sonochemical synthesis of silver vanadium oxide micro/nanorods: solvent and surfactant effects. Ultrason. Sonochem. 20, 354–365 (2013). https://doi.org/10.1016/j.ultsonch.2012.05.002

    Article  CAS  Google Scholar 

  26. S.F. Wang, F. Gu, M.K. Lu, Sonochemical synthesis of hollow. PbS Nanospheres 22, 398–401 (2005). https://doi.org/10.1021/LA0518647

    Article  Google Scholar 

  27. S. Ali, V.S. Myasnichenko, E.C. Neyts, Size-dependent strain and surface energies of gold nanoclusters. Phys. Chem. Chem. Phys. 18, 792–800 (2016). https://doi.org/10.1039/C5CP06153A

    Article  CAS  Google Scholar 

  28. L. Ren, P. Wang, Y. Han, C. Hu, B. Wei, Synthesis of CoC2O4·2H2O nanorods and their thermal decomposition to Co3O4 nanoparticles. Chem. Phys. Lett. 476, 78–83 (2009). https://doi.org/10.1016/J.CPLETT.2009.06.015

    Article  CAS  Google Scholar 

  29. D. Wang, Q. Wang, T. Wang, Morphology-controllable synthesis of cobalt oxalates and their conversion to mesoporous Co3O4 nanostructures for application in supercapacitors. Inorg. Chem. 50, 6482–6492 (2011). https://doi.org/10.1021/ic200309t

    Article  CAS  Google Scholar 

  30. M. Salavati-Niasari, N. Mir, F. Davar, Synthesis and characterization of Co3O4 nanorods by thermal decomposition of cobalt oxalate. J. Phys. Chem. Solids. 70, 847–852 (2009). https://doi.org/10.1016/J.JPCS.2009.04.006

    Article  CAS  Google Scholar 

  31. Q. Guo, X. Guo, Q. Tian, Optionally ultra-fast synthesis of CoO/Co3O4 particles using CoCl2 solution via a versatile spray roasting method. Adv. Powder Technol. 21, 529–533 (2010). https://doi.org/10.1016/J.APT.2010.02.003

    Article  CAS  Google Scholar 

  32. A. Pan, Y. Wang, W. Xu, Z. Nie, S. Liang, Z. Nie, C. Wang, G. Cao, J.-G. Zhang, High-performance anode based on porous Co3O4 nanodiscs. J. Power Sources. 255, 125–129 (2014). https://doi.org/10.1016/J.JPOWSOUR.2013.12.131

    Article  CAS  Google Scholar 

  33. P.N. Shelke, Y.B. Khollam, P.N. Pabrekar, P.S. More, A.M. Datir, S.D. Chakane, K.C. Mohite, P. Koinkar, Synthesis and characterization of Co3O4 powders for humidity sensing. Int. J. Mod. Phys. Conf. Ser. 06, 197–202 (2012). https://doi.org/10.1142/S2010194512003170

    Article  CAS  Google Scholar 

  34. Z. Fan, W. Fang, Z. Zhang, M. Chen, W. Shangguan, Highly active rod-like Co3O4 catalyst for the formaldehyde oxidation reaction. Catal. Commun. 103, 10–14 (2018). https://doi.org/10.1016/J.CATCOM.2017.09.003

    Article  CAS  Google Scholar 

  35. R.K. Bedi, I. Singh, Room-temperature ammonia sensor based on cationic surfactant-assisted nanocrystalline CuO. ACS Appl Mater. Interfaces. 2, 1361–1368 (2010). https://doi.org/10.1021/am900914h

    Article  CAS  Google Scholar 

  36. A. Hakim, J. Hossain, K.A. Khan, Temperature effect on the electrical properties of undoped NiO thin films. Renew. Energy. 34, 2625–2629 (2009). https://doi.org/10.1016/j.renene.2009.05.014

    Article  CAS  Google Scholar 

  37. R.S. Devan, Y.D. Kolekar, B.K. Chougule, Effect of cobalt substitution on the properties of nickel-copper ferrite. J. Phys. Condens. Matter. 18, 9809–9821 (2006). https://doi.org/10.1088/0953-8984/18/43/004

    Article  CAS  Google Scholar 

  38. M. Caglar, S. Ilican, Y. Caglar, F. Yakuphanoglu, Electrical conductivity and optical properties of ZnO nanostructured thin film. Appl. Surf. Sci. 255, 4491–4496 (2009). https://doi.org/10.1016/j.apsusc.2008.11.055

    Article  CAS  Google Scholar 

  39. I. Jiménez, M.A. Centeno, R. Scotti, F. Morazzoni, J. Arbiol, A. Cornet, J.R. Morante, NH3 interaction with chromium-doped WO3 nanocrystalline powders for gas sensing applications. J. Mater. Chem. 14, 2412–2420 (2004). https://doi.org/10.1039/b400872c

    Article  CAS  Google Scholar 

  40. J. Cao, S. Wang, H. Zhang, T. Zhang, Facile construction of Co3O4 porous microspheres with enhanced acetone gas sensing performances. Mater. Sci. Semicond. Process. 101, 10–15 (2019). https://doi.org/10.1016/j.mssp.2019.05.014

    Article  CAS  Google Scholar 

  41. S. Wang, J. Cao, W. Cui, L. Fan, X. Li, D. Li, Facile synthesis of bamboo raft-like Co3O4 with enhanced acetone gas sensing performances. J. Alloys Compd. 758, 45–53 (2018). https://doi.org/10.1016/j.jallcom.2018.05.139

    Article  CAS  Google Scholar 

  42. X. Zhang, J. Wang, L. Xuan, Z. Zhu, Q. Pan, K. Shi, G. Zhang, Novel Co3O4 nanocrystalline chain material as a high performance gas sensor at room temperature. J. Alloys Compd. 768, 190–197 (2018). https://doi.org/10.1016/j.jallcom.2018.07.240

    Article  CAS  Google Scholar 

  43. D.R. Miller, S.A. Akbar, P.A. Morris, Nanoscale metal oxide-based heterojunctions for gas sensing: a review. Sens. Actuators, B Chem. 204, 250–272 (2014). https://doi.org/10.1016/j.snb.2014.07.074

    Article  CAS  Google Scholar 

  44. Z. Dai, C.S. Lee, Y. Tian, I.D. Kim, J.H. Lee, Highly reversible switching from p- to n-type NO2 sensing in a monolayer Fe2O3 inverse opal film and the associated p-n transition phase diagram. J. Mater. Chem. A. 3, 3372–3381 (2015). https://doi.org/10.1039/c4ta05438e

    Article  CAS  Google Scholar 

  45. P. Gupta, T. Dutta, S. Mal, J. Narayan, Controlled p-type to n-type conductivity transformation in NiO thin films by ultraviolet-laser irradiation. J. Appl. Phys. 111, 0137061–0137067 (2012). https://doi.org/10.1063/1.3671412

    Article  CAS  Google Scholar 

  46. R. Molaei, R. Bayati, J. Narayan, Crystallographic characteristics and p -type to n -type transition in epitaxial Nio thin film. Cryst. Growth Des. 13, 5459–5465 (2013). https://doi.org/10.1021/cg401408f

    Article  CAS  Google Scholar 

  47. J.M. Tulliani, A. Cavalieri, S. Musso, E. Sardella, F. Geobaldo, Room temperature ammonia sensors based on zinc oxide and functionalized graphite and multi-walled carbon nanotubes. Sens. Actuators B Chem. 152, 144–154 (2011). https://doi.org/10.1016/j.snb.2010.11.057

    Article  CAS  Google Scholar 

  48. N. Zubair, K. Akhtar, High performance room temperature gas sensor based on novel morphology of zinc oxide nanostructures. Trans. Nonferrous Met. Soc. 29, 143–156 (2019). https://doi.org/10.1016/S1003-6326(18)64923-4

    Article  CAS  Google Scholar 

  49. J.W. Yoon, H.J. Kim, H.M. Jeong, J.H. Lee, Gas sensing characteristics of p-type Cr2O3 and Co3O4 nanofibers depending on inter-particle connectivity. Sens. Actuators B Chem. 202, 263–271 (2014). https://doi.org/10.1016/j.snb.2014.05.081

    Article  CAS  Google Scholar 

  50. X. Liu, M. Hu, Y. Wang, J. Liu, Y. Qin, High sensitivity NO2 sensor based on CuO/p-porous silicon heterojunction at room temperature. J. Alloys Compd. 685, 364–369 (2016). https://doi.org/10.1016/j.jallcom.2016.05.215

    Article  CAS  Google Scholar 

  51. L. Gao, Z. Cheng, Q. Xiang, Y. Zhang, J. Xu, Porous corundum-type In2O3 nanosheets: synthesis and NO2 sensing properties. Sens. Actuators B Chem. 208, 436–443 (2015). https://doi.org/10.1016/j.snb.2014.11.053

    Article  CAS  Google Scholar 

  52. Q. Li, Y. Du, X. Li, G. Lu, W. Wang, Y. Geng, Z. Liang, X. Tian, Different Co3O4 mesostructures synthesised by templating with KIT-6 and SBA-15 via nanocasting route and their sensitivities toward ethanol. Sens. Actuators B Chem. 235, 39–45 (2016). https://doi.org/10.1016/j.snb.2016.05.033

    Article  CAS  Google Scholar 

  53. T. Li, W. Zeng, H. Long, Z. Wang, Nanosheet-assembled hierarchical SnO2 nanostructures for efficient gas-sensing applications. Sens. Actuators B Chem. 231, 120–128 (2016). https://doi.org/10.1016/j.snb.2016.03.003

    Article  CAS  Google Scholar 

  54. T.R. Reina, A.Á. Moreno, S. Ivanova, J.A. Odriozola, M.A. Centeno, Influence of vanadium or cobalt oxides on the CO oxidation behavior of Au/MO x/CeO2-Al2O3 systems. Chem. Cat. Chem. 4, 512–520 (2012). https://doi.org/10.1002/cctc.201100373

    Article  CAS  Google Scholar 

  55. H.J. Kim, J.H. Lee, Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview. Sens. Actuators B Chem. 192, 607–627 (2014). https://doi.org/10.1016/j.snb.2013.11.00

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the National Centre of Excellence in Physical Chemistry (NCEPC), University of Peshawar, Khyber Pakhtunkhwa, and the Higher Education Commission of Pakistan (HEC), for facilitating this research work.

Funding

This study was funded by National Centre of Excellence in Physical Chemistry (NCEPC), University of Peshawar, Khyber Pakhtunkhwa, and the Higher Education Commission of Pakistan (HEC).

Author information

Authors and Affiliations

Authors

Contributions

HK: Formal analysis, Methodology, Investigation, Software, Writing—Original Draft, Data Curation. KA: Supervision, Conceptualization, Validation, Resources, Writing—Review & Editing.

Corresponding author

Correspondence to Khalida Akhtar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interest or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This article doesn’t contain any study of human participants, therefore, ethical approval is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalid, H., Akhtar, K. Room temperature synthesis and ammonia sensing of monodispersed hierarchical 1 and 3-dimensional Co3O4 nanostructures: switching from p to n-type sensing. J Mater Sci: Mater Electron 33, 3361–3383 (2022). https://doi.org/10.1007/s10854-021-07535-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07535-5

Navigation