Skip to main content

Advertisement

Log in

A facile lanthanum-doping strategy for enhancing the long-cycle performance of lithium-rich layered oxides

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

By virtue of high discharge capacity and wide voltage range, lithium-rich layered oxides (LLO) are expected to become the most promising cathode materials for high-energy lithium-ion batteries. However, there are still some challenges that hinder the commercial application of LLO. In this work, the conversion of structure (layered to spinel) is inhibited through La-doping, which enhances the cycle performance and relieves voltage decay of LLO. A pinch of La-doping can prevent the migration of transition metal (TM) ions and stabilize crystal structure. As a result, the La-doped lithium-rich layered oxide (LaLLO) exhibit higher discharge specific capacity of 164.1 mAh g−1 (vs. 127.4 mAh g−1) with a cycle retention rate of 78.3% (vs. 61.0%) after 300 cycles at 1C. At the same time, LaLLO demonstrated better voltage stability with an average voltage decay of 1.5 mV per cycle (vs. 2.0 mV per cycle). In addition, irreversible release of O2− is restrained due to the stronger La–O bond, the initial coulomb efficiency can be enhanced from 73.2% to 82.4%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. G. Hu, Y. Shi, J. Fan, Y. Cao, Z. Peng, Y. Zhang, F. Zhu, Q. Sun, Z. Xue, Y. Liu, K. Du, Sb doping and Sb2O3 coating collaboration to improve the electrochemical performance of LiNi0.5Mn0.5O2 cathode material for lithium ion batteries. Electrochim. Acta. 364, 137127 (2020)

    Article  CAS  Google Scholar 

  2. M. Wang, Y. Han, M. Chu, L. Chen, M. Liu, Y. Gu, Enhanced electrochemical performances of cerium-doped Li-Rich Li1.2Ni0.13Co0.13Mn0.54O2 cathode materials. J. Alloys Compd. 861, 158000 (2021)

    Article  CAS  Google Scholar 

  3. X. Zhai, P. Zhang, H. Huang, J. Zhou, X. Li, B. Chen, Y. He, Z. Guo, Surface modification of Li-rich layered Li1.2Mn0.54Ni0.13Co0.13O2 oxide with Fe2O3 as cathode material for Li-ion batteries. Solid State Ionics. 366, 115661 (2021)

    Article  Google Scholar 

  4. W. He, P. Liu, Y. Zhang, J. Lin, B. Qu, Z. Zheng, J. Wang, Y. Zhang, B. Sa, L. Wang, Q. Xie, D.-L. Peng, Utilizing the different distribution habit of La and Zr in Li-rich Mn-based cathode to achieve fast lithium-ion diffusion kinetics. J. Power Sources. 499, 229915 (2021)

    Article  CAS  Google Scholar 

  5. B. Li, X. Wang, Y. Gao, B. Wang, J. Qiu, X. Cheng, D. Dai, Improving rate performances of Li-rich layered oxide by the co-doping of Sn and K ions. J. Materiomics. 5, 149–155 (2019)

    Article  Google Scholar 

  6. Y. Xie, S. Chen, W. Yang, H. Zou, Z. Lin, J. Zhou, Improving the rate capability and decelerating the voltage decay of Li-rich layered oxide cathodes by constructing a surface-modified microrod structure. J. Alloys Compd. 772, 230–239 (2019)

    Article  CAS  Google Scholar 

  7. Y. Cai, L. Ku, L. Wang, Y. Ma, H. Zheng, W. Xu, J. Han, B. Qu, Y. Chen, Q. Xie, D.-L. Peng, Engineering oxygen vacancies in hierarchically Li-rich layered oxide porous microspheres for high-rate lithium ion battery cathode. Sci. China Mater. 62, 1374–1384 (2019)

    Article  CAS  Google Scholar 

  8. X. Lan, Y. Li, S. Guo, L. Yu, Y. Xin, Z. Liu, X. Hu, Stabilizing Li-rich layered cathode materials by nanolayer-confined crystal growth for Li-ion batteries. Electrochim. Acta. 333, 135466 (2020)

    Article  CAS  Google Scholar 

  9. C. Lu, S. Yang, H. Wu, Y. Zhang, X. Yang, T. Liang, Enhanced electrochemical performance of Li-rich Li1.2Mn0.52Co0.08Ni0.2O2 cathode materials for Li-ion batteries by vanadium doping. Electrochim. Acta. 209, 448–455 (2016)

    Article  CAS  Google Scholar 

  10. X. Ju, X. Hou, Z. Liu, H. Zheng, H. Huang, B. Qu, T. Wang, Q. Li, J. Li, The full gradient design in Li-rich cathode for high performance lithium ion batteries with reduced voltage decay. J. Power Sources. 437, 226902 (2019)

    Article  CAS  Google Scholar 

  11. Z. Sun, L. Xu, C. Dong, H. Zhang, M. Zhang, Y. Ma, Y. Liu, Z. Li, Y. Zhou, Y. Han, Y. Chen, A facile gaseous sulfur treatment strategy for Li-rich and Ni-rich cathode materials with high cycling and rate performance. J. Nano Energy Power Res. 63, 103887 (2019)

    CAS  Google Scholar 

  12. D. Wang, T. Xu, Y. Li, D. Pan, L. Li, Y. Bai, A facile strategy to enhance the stability of Li-rich cathode: Electrochemical performance improvement and mechanism exploration. Ceram. Int. 44, 17425–17433 (2018)

    Article  CAS  Google Scholar 

  13. J.H. Song, A. Kapylou, H.S. Choi, B.Y. Yu, E. Matulevich, S.H. Kang, Suppression of irreversible capacity loss in Li-rich layered oxide by fluorine doping. J. Power Sources. 313, 65–72 (2016)

    Article  CAS  Google Scholar 

  14. S. Pang, K. Xu, Y. Wang, X. Shen, W. Wang, Y. Su, M. Zhu, X. Xi, Enhanced electrochemical performance of Li-rich layered cathode materials via chemical activation of Li2MnO3 component and formation of spinel/carbon coating layer. J. Power Sources. 365, 68–75 (2017)

    Article  CAS  Google Scholar 

  15. H. Zhu, R. Shen, Y. Tang, X. Yan, J. Liu, L. Song, Z. Fan, S. Zheng, Z. Chen, Sn-Doping and Li2SnO3 nano-coating layer Co-modified LiNi0.5Co0.2Mn0.3O2 with improved cycle stability at 46 V cut-off voltage. Nanomaterials (Basel). 10, 868 (2020)

    Article  CAS  Google Scholar 

  16. H. Chen, Z. He, Z. Huang, L. Song, C. Shen, J. Liu, The effects of multifunctional coating on Li-rich cathode material with hollow spherical structure for Li ion battery. Ceram. Int. 43, 8616–8624 (2017)

    Article  CAS  Google Scholar 

  17. Y. Ma, P. Liu, Q. Xie, G. Zhang, H. Zheng, Y. Cai, Z. Li, L. Wang, Z.-Z. Zhu, L. Mai, D.-L. Peng, Double-shell Li-rich layered oxide hollow microspheres with sandwich-like carbon@spinel@layered@spinel@carbon shells as high-rate lithium ion battery cathode. J. Nano Energy Power Res. 59, 184–196 (2019)

    CAS  Google Scholar 

  18. T. Sattar, S.H. Lee, B.S. Jin, H.S. Kim, Influence of Mo addition on the structural and electrochemical performance of Ni-rich cathode material for lithium-ion batteries. Sci. Rep. 10, 8562 (2020)

    Article  CAS  Google Scholar 

  19. S. Jamil, R. Yu, Q. Wang, M. Fasehullah, Y. Huang, Z. Yang, X. Yang, X. Wang, Enhanced cycling stability of nickel-rich layered oxide by tantalum doping. J. Power Sources. 473, 228597 (2020)

    Article  CAS  Google Scholar 

  20. Z. Tai, W. Zhu, M. Shi, Y. Xin, S. Guo, Y. Wu, Y. Chen, Y. Liu, Improving electrochemical performances of Lithium-rich oxide by cooperatively doping Cr and coating Li3PO4 as cathode material for Lithium-ion batteries. J. Colloid Interface Sci. 576, 468–475 (2020)

    Article  CAS  Google Scholar 

  21. Y. Lu, S. Shi, F. Yang, T. Zhang, H. Niu, T. Wang, Mo-doping for improving the ZrF4 coated-Li[Li0.20Mn0.54Ni0.13Co0.13]O2 as high performance cathode materials in lithium-ion batteries. J. Alloys Compd. 767, 23–33 (2018)

    Article  CAS  Google Scholar 

  22. L. Qiu, W. Xiang, W. Tian, C.-L. Xu, Y.-C. Li, Z.-G. Wu, T.-R. Chen, K. Jia, D. Wang, F.-R. He, X.-D. Guo, Polyanion and cation co-doping stabilized Ni-rich Ni–Co–Al material as cathode with enhanced electrochemical performance for Li-ion battery. J. Nano Energy Power Res. 63, 103818 (2019)

    CAS  Google Scholar 

  23. Q. Ma, Z. Chen, S. Zhong, J. Meng, F. Lai, Z. Li, C. Cheng, L. Zhang, T. Liu, Na-substitution induced oxygen vacancy achieving high transition metal capacity in commercial Li-rich cathode. J. Nano Energy Power Res. 81, 105622 (2021)

    CAS  Google Scholar 

  24. S. Sallard, D. Sheptyakov, C. Villevieille, Improved electrochemical performances of Li-rich nickel cobalt manganese oxide by partial substitution of Li+ by Mg2+. J. Power Sources. 359, 27–36 (2017)

    Article  CAS  Google Scholar 

  25. B. Huang, M. Wang, G. Xu, L. Hu, L. Chen, Y. Gu, Synergistic effect of bulk phase doping and layered-spinel structure formation on improving electrochemical performance of Li-Rich cathode material. Ceram. Int. 47, 7700–7710 (2021)

    Article  CAS  Google Scholar 

  26. M. Wang, L. Chen, M. Liu, Y. Chen, Y. Gu, Enhanced electrochemical performance of La-doped Li-rich layered cathode material. J. Alloys Compd. 848, 156620 (2020)

    Article  CAS  Google Scholar 

  27. L. Li, B.H. Song, Y.L. Chang, H. Xia, J.R. Yang, K.S. Lee, L. Lu, Retarded phase transition by fluorine doping in Li-rich layered Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. J. Power Sources. 283, 162–170 (2015)

    Article  CAS  Google Scholar 

  28. X. Hu, H. Guo, J. Wang, Z. Wang, X. Li, Q. Hu, W. Peng, Structural and electrochemical characterization of NH4F-pretreated lithium-rich layered Li[Li0.2Ni0.13Co0.13Mn0.54]O2 cathodes for lithium-ion batteries. Ceram. Int. 44, 14370–14376 (2018)

    Article  CAS  Google Scholar 

  29. P. Liu, Y. Zhang, P. Dong, Y. Zhang, Q. Meng, S. Zhou, X. Yang, M. Zhang, X. Yang, Direct regeneration of spent LiFePO4 cathode materials with pre-oxidation and V-doping. J. Alloys Compd. 860, 157909 (2021)

    Article  CAS  Google Scholar 

  30. C. Huang, Z. Wang, Z.-Q. Fang, S.-X. Zhao, L.-J. Ci, Achieving high initial coulombic efficiency and low voltage dropping in Li-rich Mn-based cathode materials by Metal-Organic frameworks-derived coating. J. Power Sources. 499, 229967 (2021)

    Article  CAS  Google Scholar 

  31. Y. Bao, J. Wang, Y. Qian, Y. Deng, X. Yang, G. Chen, An appropriate amount of new spinel phase induced by control synthesis for the improvement of electrochemical performance of Li-rich layered oxide cathode material. Electrochim. Acta. 330, 135240 (2020)

    Article  CAS  Google Scholar 

  32. Y. Xiang, J. Li, X. Wu, Z. Liu, L. Xiong, Z. He, Z. Yin, Synthesis and electrochemical characterization of Mg-doped Li-rich Mn-based cathode material. Ceram. Int. 42, 8833–8838 (2016)

    Article  CAS  Google Scholar 

  33. S. Jamil, A. Bin Yousaf, S. Hee Yoon, D. Suk Han, L. Yang, P. Kasak, X. Wang, Dual cationic modified high Ni-low co layered oxide cathode with a heteroepitaxial interface for high energy-density lithium-ion batteries. Chem. Eng. J. 416, 129118 (2021)

    Article  CAS  Google Scholar 

  34. S. Lin, Z. Wang, T. Lu, H. Wang, P. Li, F. Yang, Z. Guo, One-step preparation of homogeneous single crystal Li-rich cathode materials with encouraging electrochemical performance. J. Alloys Compd. 822, 153638 (2020)

    Article  CAS  Google Scholar 

  35. R. Saroha, J.S. Cho, J.-H. Ahn, Synergetic effects of cation (K+) and anion (S2−)-doping on the structural integrity of Li/Mn-rich layered cathode material with considerable cyclability and high-rate capability for Li-ion batteries. Electrochim. Acta. 366, 137471 (2021)

    Article  CAS  Google Scholar 

  36. M. Wang, M. Luo, Y. Chen, L. Chen, S. Yan, Y. Ren, M. Chu, A new approach to improve the electrochemical performance of Li-rich cathode material by precursor pretreatment. J. Alloys Compd. 696, 891–899 (2017)

    Article  CAS  Google Scholar 

  37. S. Krishna Kumar, S. Ghosh, P. Ghosal, S.K. Martha, Synergistic effect of 3D electrode architecture and fluorine doping of Li1.2Ni0.15Mn0.55Co0.1O2 for high energy density lithium-ion batteries. J. Power Sources. 356, 115–123 (2017)

    Article  CAS  Google Scholar 

  38. J. Han, H. Zheng, Z. Hu, X. Luo, Y. Ma, Q. Xie, D.-L. Peng, G. Yue, Facile synthesis of Li-rich layered oxides with spinel-structure decoration as high-rate cathode for lithium-ion batteries. Electrochim. Acta. 299, 844–852 (2019)

    Article  CAS  Google Scholar 

  39. Z. Peng, K. Mu, Y. Cao, L. Xu, K. Du, G. Hu, Enhanced electrochemical performance of layered Li-rich cathode materials for lithium ion batteries via aluminum and boron dual-doping. Ceram. Int. 45, 4184–4192 (2019)

    Article  CAS  Google Scholar 

  40. L. Ming, B. Zhang, C. Wang, X. Ou, J. Zhang, Z. Yang, La-doping and carbon-coating collaboratively enhance the cycling and rate properties of LiFeBO3 for Li-ion battery. Chem. Phys. Lett. 741, 137090 (2020)

    Article  CAS  Google Scholar 

  41. H. Zhu, H. Yu, H. Jiang, Y. Hu, H. Jiang, C. Li, High-efficiency Mo doping stabilized LiNi0.9Co0.1O2 cathode materials for rapid charging and long-life Li-ion batteries. Chem. Eng. Sci. 217, 115518 (2020)

    Article  CAS  Google Scholar 

  42. Q. Zhang, Y. Su, L. Chen, Y. Lu, L. Bao, T. He, J. Wang, R. Chen, J. Tan, F. Wu, Pre-oxidizing the precursors of Nickel-rich cathode materials to regulate their Li+/Ni2+ cation ordering towards cyclability improvements. J. Power Sources. 396, 734–741 (2018)

    Article  CAS  Google Scholar 

  43. B. Chen, B. Zhao, J. Zhou, Z. Fang, Y. Huang, X. Zhu, Y. Sun, Surface modification with oxygen vacancy in Li-rich layered oxide Li1.2Mn0.54Ni0.13Co0.13O2 for lithium-ion batteries. J. Mater. Sci. Technol. 35, 994–1002 (2019)

    Article  Google Scholar 

  44. Z. Luo, Z. Zhou, Z. He, Z. Sun, J. Zheng, Y. Li, Enhanced electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode by surface modification using La–Co–O compound. Ceram. Int. 47, 2656–2664 (2021)

    Article  CAS  Google Scholar 

  45. Y. Tao, Z. Li, L. Tang, X. Pu, T. Cao, D. Cheng, Q. Xu, H. Liu, Y. Wang, Y. Xia, Nickel and cobalt Co-substituted spinel ZnMn2O4@N-rGO for increased capacity and stability as a cathode material for rechargeable aqueous zinc-ion battery. Electrochim. Acta. 331, 135296 (2020)

    Article  CAS  Google Scholar 

  46. S.-L. Cui, Y.-Y. Wang, S. Liu, G.-R. Li, X.-P. Gao, Evolution mechanism of phase transformation of Li-rich cathode materials in cycling. Electrochim. Acta. 328, 135109 (2019)

    Article  CAS  Google Scholar 

  47. H. Zhuo, Y. Liu, Z. Wang, A. Zhang, Z. Li, Z. Ren, X. Liu, H. Peng, L. Wang, J. Shi, X. Sun, S. Lu, D. Xia, W. Zhuang, Insight of reaction mechanism and anionic redox behavior for Li-rich and Mn-based oxide materials from local structure. J. Nano Energy Power Res. 83, 105812 (2021)

    CAS  Google Scholar 

  48. J. Zhao, X. Kuai, X. Dong, H. Wang, W. Zhao, L. Gao, Y. Wang, R. Huang, Phase transitions and related electrochemical performances of Li-Rich layered cathode materials for high-energy lithium ion batteries. J. Alloys Compd. 732, 385–395 (2018)

    Article  CAS  Google Scholar 

  49. Y. Tian, M. Chen, S. Xue, Y. Cai, Q. Huang, X. Liu, W. Li, Template-determined microstructure and electrochemical performances of Li-rich layered metal oxide cathode. J. Power Sources. 401, 343–353 (2018)

    Article  CAS  Google Scholar 

  50. G. Chen, J. An, Y. Meng, C. Yuan, B. Matthews, F. Dou, L. Shi, Y. Zhou, P. Song, G. Wu, D. Zhang, Cation and anion Co-doping synergy to improve structural stability of Li- and Mn-rich layered cathode materials for lithium-ion batteries. J. Nano Energy Power Res. 57, 157–165 (2019)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Sichuan Science and Technology Program (2019ZDZX0029). The authors would like to acknowledge the experimental facilities provided by Sichuan LüXin Power Technology Co., Ltd.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by YQ. The first draft of the manuscript was written by YQ and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jing Li.

Ethics declarations

Conflict of interest

We authors declare that we do not have conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, Y., Duan, J., Wu, Q. et al. A facile lanthanum-doping strategy for enhancing the long-cycle performance of lithium-rich layered oxides. J Mater Sci: Mater Electron 33, 3151–3161 (2022). https://doi.org/10.1007/s10854-021-07517-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07517-7

Navigation