Skip to main content

Advertisement

Log in

Pseudocapacitive binary metal oxide NiMn2O4 nanoparticles as an electrode for high-powered hybrid supercapacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Integration of faradaic and non-faradaic mechanisms of energy storage in a single capacitor is a promising approach for enhancing the energy density of supercapacitors. Here, we describe the fabrication and performance of the hybrid capacitor comprised of spinel NiMn2O4 as the pseudocapacitive electrode and activated carbon as EDLC electrode. Besides, the synthesis of binary metal oxide, NiMn2O4, at the nanoscale by simple sol–gel method and the analysis of its capacitive performance are discussed in detail. Because of the involvement of both transition metals, Ni and Mn, in the charge transfer reaction, NiMn2O4 exhibits a higher specific capacitance of 214 F g−1 in the alkaline electrolyte, 2 M NaOH. In hybrid configuration with hierarchically porous carbon electrode derived from corn husk, the potential window of the hybrid capacitor is extended beyond the decomposition potential of water since NiMn2O4 behaves as a positive electrode and activated carbon acts as a negative electrode in the hybrid configuration. As a result, the hybrid capacitor of the configuration AC || 2 M NaOH || NiMn2O4 delivers the highest capacitance of 51 F g−1 within the potential window of 0.0 to 1.6 V. It exhibits a high energy density of 5.33 Wh kg−1 and high power density of 4601.62 W kg−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article [and its supplementary information files].

References

  1. J. Song, J. Xiang, C.P. Mu, B.C. Wang, F.S. Wen, C. Su, C. Wang, Z.Y. Liu, Facile synthesis and excellent electrochemical performance of CoP nanowire on carbon cloth as bifunctional electrode for hydrogen evolution reaction and supercapacitor. Sci. China Mater. 60, 1179–1186 (2017). https://doi.org/10.1007/s40843-017-9120-6

    Article  CAS  Google Scholar 

  2. B.C. Yang, A.M. Nie, Y.K. Chang, Y. Cheng, F.S. Wen, J.Y. Xiang, L. Li, Z.Y. Liu, Metallic layered germanium phosphide GeP5 for high rate flexible all-solid-state supercapacitors. J. Mater. Chem. A 6, 19409–19416 (2018). https://doi.org/10.1039/C8TA06568C

    Article  CAS  Google Scholar 

  3. G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797–828 (2012). https://doi.org/10.1039/C1CS15060J

    Article  CAS  Google Scholar 

  4. H. Wu, M. Xu, H.Y. Wu, J.J. Xu, Y.L. Wang, Z. Peng, G.F. Zheng, Aligned NiO nanoflake arrays grown on copper as high-capacity lithium-ion battery anodes. J. Mater. Chem. 22, 19821–19825 (2012). https://doi.org/10.1039/C2JM34496C

    Article  CAS  Google Scholar 

  5. E.G. Calvo, C.O. Ania, L. Zubizarreta, J.A. Menendez, A. Arenillas, Exploring new routes in the synthesis of carbon xerogels for their application in electric double-layer capacitors. Energy Fuels 24, 3334–3339 (2010). https://doi.org/10.1021/ef901465j

    Article  CAS  Google Scholar 

  6. S.K. Meher, P. Justin, G. Ranga Rao, Microwave-mediated synthesis for improved morphology and pseudocapacitance performance of nickel oxide. ACS Appl. Mater. Interfaces 3, 2063–2073 (2011). https://doi.org/10.1021/am200294k

    Article  CAS  Google Scholar 

  7. S. Najib, E. Erdem, Current progress achieved in novel materials for supercapacitor electrodes: mini review. Nanoscale Adv. 8, 2817–2827 (2019). https://doi.org/10.1039/C9NA00345B

    Article  Google Scholar 

  8. Z.S. Wu, D.W. Wang, W. Ren, J. Zhao, G. Zhou, F. Li, H.M. Cheng, Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors. Adv. Funct. Mater. 20, 3595–3602 (2010). https://doi.org/10.1002/adfm.201001054

    Article  CAS  Google Scholar 

  9. C. Yin, L. He, Y. Wang, Z. Liu, G. Zhang, K. Zhao, C. Tang, M. Yan, Y. Han, L. Mai, Pyrolyzed carbon with embedded NiO/Ni nanospheres for applications in microelectrodes. RSC Adv. 6, 43436–43441 (2016). https://doi.org/10.1039/C6RA06864B

    Article  CAS  Google Scholar 

  10. B. Pandit, D.P. Dubal, B.R. Sankapal, Large scale flexible solid-state symmetric supercapacitor through inexpensive solution processed V2O5 complex surface architecture. Electrochim. Acta 242, 382–389 (2017). https://doi.org/10.1016/j.electacta.2017.05.010

    Article  CAS  Google Scholar 

  11. S. Yang, X. Song, P. Zhang, L. Gao, Heating-rate-induced porous alpha-Fe2O3 with controllable pore size and crystallinity grown on graphene for supercapacitors. ACS Appl. Mater. Interfaces 7, 75–79 (2015). https://doi.org/10.1021/am507910f

    Article  CAS  Google Scholar 

  12. J. Deng, L. Kang, G. Bai, Y. Li, P. Li, X. Liu, Y. Yang, F. Gao, W. Liang, Solution combustion synthesis of cobalt oxides (Co3O4 and Co3O4/CoO) nanoparticles as supercapacitor electrode materials. Electrochim. Acta 132, 127–135 (2014). https://doi.org/10.1016/j.electacta.2014.03.158

    Article  CAS  Google Scholar 

  13. T.H. Wu, D. Hesp, V. Dhanak, C. Collins, F. Braga, L.J. Hardwick, C.C. Hu, Charge storage mechanism of activated manganese oxide composites for pseudocapacitors. J. Mater. Chem. A 3, 12786–12795 (2015). https://doi.org/10.1039/C5TA03334A

    Article  CAS  Google Scholar 

  14. S. Najib, F. Bakan, N. Abdullayeva, R. Bahariqushchi, S. Kasap, G. Franzò, M. Sankir, N.D. Sankir, S. Mirabellad, E. Erdem, Tailoring morphology to control defect structures in ZnO electrodes for high-performance supercapacitor devices. Nanoscale 12, 16162–16172 (2020). https://doi.org/10.1039/D0NR03921G

    Article  CAS  Google Scholar 

  15. Z.C. Zheng, M. Yongzhi, B. Qingkai, Z. Yanting, W. Kai, Two-step synthesis and characterization of MnCo2O4 composite and its electrochemical performance. Int. J. Electrochem. Sci. 13, 10207–10216 (2018). https://doi.org/10.20964/2018.11.60

    Article  CAS  Google Scholar 

  16. F. Zhang, C. Su, F. Wen, C. Mu, X. Li, X. Ming, High-performance aqueous asymmetric supercapacitors based on microwave-synthesized self-supported NiCo2O4 nanograss and carbide-derived carbon. Chem. Select 5, 2865–2870 (2020). https://doi.org/10.1002/slct.201904167

    Article  CAS  Google Scholar 

  17. M.S. Michael, Role of Cu substitution on the pseudocapacitive performance of nano-platelet shaped spinels, NixCuzCoyO4{x=1-z, y=2-z, z=0.2}. Electrochim. Acta 120, 350–358 (2014). https://doi.org/10.1016/j.electacta.2013.12.056

    Article  CAS  Google Scholar 

  18. L. Ren, J. Chen, X. Wang, M. Zhi, J. Wu, X. Zhang, Facile synthesis of flower-like CoMn2O4 microspheres for electrochemical supercapacitors. RSC Adv. 5, 30963–30969 (2015). https://doi.org/10.1039/C5RA02663F

    Article  CAS  Google Scholar 

  19. B. Zhu, S. Tang, S. Vongehr, H. Xie, J. Zhu, X. Meng, FeCo2O4 submicron-tube arrays grown on Ni foam as high rate-capability and cycling-stability electrodes allowing superior energy and power densities with symmetric supercapacitors. Chem. Commun. 52, 2624–2627 (2016). https://doi.org/10.1039/c5cc08857g

    Article  CAS  Google Scholar 

  20. A. Ray, A. Roy, M. Ghosh, J.A. Ramos-Ramón, S. Saha, U. Pal, S.K. Bhattacharya, S. Das, Study on charge storage mechanism in working electrodes fabricated by sol-gel derived spinel NiMn2O4 nanoparticles for supercapacitor application. Appl. Surf. Sci. 463, 513–525 (2019). https://doi.org/10.1016/j.apsusc.2018.08.259

    Article  CAS  Google Scholar 

  21. N. Hu, L. Huang, W. Gong, P.K. Shen, High-performance asymmetric supercapacitor based on hierarchical NiMn2O4@CoS core-shell microspheres and stereotaxically constricted graphene. ACS Sustain. Chem. Eng. 12, 16933–16940 (2018). https://doi.org/10.1021/acssuschemeng.8b04265

    Article  CAS  Google Scholar 

  22. H. Nan, W. Ma, Z. Gu, B. Geng, X. Zhang, Hierarchical NiMn2O4@CNT nanocomposites for high-performance asymmetric supercapacitors. RSC Adv. 5, 24607–24614 (2015). https://doi.org/10.1039/C5RA00979K

    Article  CAS  Google Scholar 

  23. M.A.A. Mohd Abdah, N.H. Nabilah Azman, S. Kulandaivalu, Y. Sulaiman, Review of the use of transition-metal-oxide and conducting polymer-based fibres for high-performance supercapacitors. Mater. Des. 186, 108199 (2020). https://doi.org/10.1016/j.matdes.2019.108199

    Article  CAS  Google Scholar 

  24. M.A. Yahya, M.H. Mansor, W.A.A. Wan Zolkarnaini, N.S. Rusli, A. Aminuddin, K. Mohamad, F.A.M. Sabhan, A.A.A. Atik, L.N. Ozair, A brief review on activated carbon derived from agriculture by-product. AIP Conf. Proc. 1972, 030023 (2018). https://doi.org/10.1063/1.5041244

    Article  CAS  Google Scholar 

  25. P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008). https://doi.org/10.1038/nmat2297

    Article  CAS  Google Scholar 

  26. E. Frackowiak, F. Beguin, Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39, 937–950 (2001). https://doi.org/10.1016/S0008-6223(00)00183-4

    Article  CAS  Google Scholar 

  27. M.U. Rani, K. Nanaji, T.N. Rao, A.S. Deshpande, Corn husk derived activated carbon with enhanced electrochemical performance for high-voltage supercapacitors. J. Power Sources 471, 228387 (2020). https://doi.org/10.1016/j.jpowsour.2020.228387

    Article  CAS  Google Scholar 

  28. K. Surya, M.S. Michael, Novel interconnected hierarchical porous carbon electrodes derived from bio-waste of corn husk for supercapacitor applications. J. Electroanal. Chem. 878, 114674 (2020). https://doi.org/10.1016/j.jelechem.2020.114674

    Article  CAS  Google Scholar 

  29. M.Y. Arsentev, N.Y. Kovalko, A.V. Shmigel, P.A. Tikhonov, M.V. Kalinina, NiMn2O4 spinel as a material for supercapacitors with a pseudocapacity effect. Glass Phys. Chem. 43, 376–379 (2017). https://doi.org/10.1134/S1087659617040022

    Article  CAS  Google Scholar 

  30. C. Wang, Z. Guan, Y. Shen, S. Yu, X.Z. Fu, R. Sun, C.P. Wong, Shape-controlled synthesis of CoMoO4@Co1.5Ni1.5S4 hybrids with rambutan-like structure for high performance all-solid-state supercapacitors. Chem. Eng. J. 346, 193–202 (2018). https://doi.org/10.1016/j.cej.2018.03.160

    Article  CAS  Google Scholar 

  31. N. Wang, B. Sun, P. Zhao, M. Yao, W. Hu, S. Komarneni, Electrodeposition preparation of NiCo2O4 mesoporous film on ultrafine nickel wire for flexible asymmetric supercapacitors. Chem. Eng. J. 345, 31–38 (2018). https://doi.org/10.1016/j.cej.2018.03.147

    Article  CAS  Google Scholar 

  32. S.T. Senthilkumar, F. Nianqing, Y. Liu, Y. Wang, L. Zhou, H. Huang, Flexible fiber hybrid supercapacitor with NiCo2O4 nanograss@carbon fiber and bio-waste derived high surface area porous carbon. Electrochim. Acta 211, 411–419 (2016). https://doi.org/10.1016/j.electacta.2016.06.059

    Article  CAS  Google Scholar 

  33. X. Tang, B. Zhang, Y.H. Lui, S. Hu, Ni-Mn bimetallic oxide nanosheets as high-performance electrode materials for asymmetric supercapacitors. J. Energy Storage 25, 100897 (2019). https://doi.org/10.1016/j.est.2019.100897

    Article  Google Scholar 

  34. K. Shree Kesavan, K. Surya, M.S. Michael, High powered hybrid supercapacitor with microporous activated carbon. Solid State Ion. 321, 15–22 (2018). https://doi.org/10.1016/j.ssi.2018.04.005

    Article  CAS  Google Scholar 

  35. H.Y. Sun, L.Y. Lin, Y.Y. Huang, W.L. Hong, Nickel precursor-free synthesis of nickel cobalt-based ternary metal oxides for asymmetric supercapacitors. Electrochim. Acta 281, 692–699 (2018). https://doi.org/10.1016/j.electacta.2018.06.017

    Article  CAS  Google Scholar 

  36. K. Xu, S. Ma, Y. Shen, Q. Ren, J. Yanga, X. Chen, J. Hu, CuCo2O4 nanowire arrays wrapped in metal oxide nanosheets as hierarchical Multicomponent electrodes for supercapacitors. Chem. Eng. J. 369, 363–369 (2019). https://doi.org/10.1016/j.cej.2019.03.079

    Article  CAS  Google Scholar 

  37. Y. Shang, T. Xie, Y. Gai, L. Su, L. Gong, H. Lv, F. Dong, Self-assembled hierarchical peony-like ZnCo2O4 for high-performance asymmetric supercapacitors. Electrochim. Acta 253, 281–290 (2017). https://doi.org/10.1016/j.electacta.2017.09.042

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the management of Sri Sivasubramaniya Nadar College of Engineering for their constant support and Encouragement.

Author information

Authors and Affiliations

Authors

Contributions

KS—Conceptualization, and Writing—original Manuscript. MSM—Validation, Investigation, and Supervision.

Corresponding author

Correspondence to K. Surya.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1016 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surya, K., Michael, M.S. Pseudocapacitive binary metal oxide NiMn2O4 nanoparticles as an electrode for high-powered hybrid supercapacitors. J Mater Sci: Mater Electron 33, 3139–3150 (2022). https://doi.org/10.1007/s10854-021-07516-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07516-8

Navigation