Skip to main content

Advertisement

Log in

Enhanced energy storage density of antiferroelectric AgNbO3-based ceramics by Bi/Ta modification at A/B sites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Dielectric capacitors have attracted extensive attention due to their high power density along with fast charge/discharge rate. Despite the high energy storage performance were obtained in lead-based ceramics, we still need to find lead-free ceramic alternatives considering the environmental requirements, and AgNbO3 has received extensive attention owing to its ferroelectric–antiferroelectric (FE–AFE) phase transition. In our study, the AFE properties of the samples were improved by tuning the grain size and polarizability of ions, and excellent energy storage performance was obtained in Bi/Ta co-doped AgNbO3. The BANT ceramic exhibited a remarkably enhanced recoverable energy density of 3.9 J/cm3 and acceptable efficiency of 61%. Morphological and structural analyses and electrical properties revealed that this co-substitution can optimize the AFE properties of the material, which can be demonstrated by the slim P–E loops and the reduced grain sizes. Of note, the BANT6 ceramic exhibited fast discharge speed accompanied by the actual energy storage density of up to 3.5 J/cm3 under 260 kV/cm. These findings indicate that AgNbO3-based AFE ceramics are a prospective alternative for energy storage materials applied to high-pulse-power fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from School of Materials, Guilin University of Electronic Science and Technology, but restrictions apply to the availability of these data, which were used under license for the current study, and so are not publicly available. Data are, however, available from the authors upon reasonable request and with permission of Pro. Changlai Yuan.

References

  1. P. Redhu, A. Hooda, P. Sharma, S. Dahiya, R. Punia, R.P. Tandon, Ferroelectrics 569, 136 (2020). https://doi.org/10.1080/00150193.2020.1791661

    Article  CAS  Google Scholar 

  2. K.M. Slenes, P. Winsor, T. Scholz, M. Hudis, IEEE Trans. Magn. 37, 324 (2001). https://doi.org/10.1109/20.911847

    Article  CAS  Google Scholar 

  3. J. Cherusseri, N. Choudhary, K.S. Kumar, Y. Jung, J. Thomas, Nanoscale Horiz. 4, 840 (2019). https://doi.org/10.1039/c9nh00152b

    Article  CAS  Google Scholar 

  4. M. Zhou, R. Liang, Z. Zhou, S. Yan, X. Dong, ACS Sustain. Chem. Eng. 6, 12755 (2018). https://doi.org/10.1021/acssuschemeng.8b01926

    Article  CAS  Google Scholar 

  5. Y. Ahn, J. Seo, J.Y. Son, Appl. Surf. Sci. 357, 429 (2015). https://doi.org/10.1016/j.apsusc.2015.09.037

    Article  CAS  Google Scholar 

  6. Z.S. Wu, K. Parvez, X. Feng, K. Mullen, Nat. Commun. 4, 2487 (2013). https://doi.org/10.1038/ncomms3487

    Article  CAS  Google Scholar 

  7. X. Wei, H. Yan, T. Wang et al., J. Appl. Phys. (2013). https://doi.org/10.1063/1.4775493

    Article  Google Scholar 

  8. H. Wang, P. Zhao, L. Chen, L. Li, X. Wang, J. Adv. Ceram. 9, 292 (2020). https://doi.org/10.1007/s40145-020-0367-8

    Article  CAS  Google Scholar 

  9. Z.M. Dang, J.K. Yuan, S.H. Yao, R.J. Liao, Adv. Mater. 25, 6334 (2013). https://doi.org/10.1002/adma.201301752

    Article  CAS  Google Scholar 

  10. A. Chelkowski, Dielectric Physics (Elsevier, New York, 1980)

    Google Scholar 

  11. C. Kittel, Phys. Rev. 82, 729 (1951). https://doi.org/10.1103/PhysRev.82.729

    Article  CAS  Google Scholar 

  12. Z. Liu, X. Chen, W. Peng et al., Appl. Phys. Lett. (2015). https://doi.org/10.1063/1.4923373

    Article  Google Scholar 

  13. X. Hao, J. Zhai, X. Yao, J. Am. Ceram. Soc. 92, 1133 (2009). https://doi.org/10.1111/j.1551-2916.2009.03015.x

    Article  CAS  Google Scholar 

  14. D. Fu, M. Endo, H. Taniguchi, T. Taniyama, M. Itoh, Appl. Phys. Lett. (2007). https://doi.org/10.1063/1.2751136

    Article  Google Scholar 

  15. A. Ratuszna, J. Pawluk, A. Kania, Phase. Transit. 76, 611 (2003). https://doi.org/10.1080/0141159021000009007

    Article  CAS  Google Scholar 

  16. P. Sciau, A. Kania, B. Dkhil, E. Suard, A. Ratuszna, J. Phys. 16, 2795 (2004). https://doi.org/10.1088/0953-8984/16/16/004

    Article  CAS  Google Scholar 

  17. I. Levin, V. Krayzman, J.C. Woicik et al., Phys. Rev. B (2009). https://doi.org/10.1103/PhysRevB.79.104113

    Article  Google Scholar 

  18. A. Kania, Ferroelectrics 205, 19 (2011). https://doi.org/10.1080/00150199808228384

    Article  Google Scholar 

  19. A. Kania, A. Niewiadomski, S. Miga et al., J. Eur. Ceram. Soc. 34, 1761 (2014). https://doi.org/10.1016/j.jeurceramsoc.2014.01.016

    Article  CAS  Google Scholar 

  20. L. Zhao, Q. Liu, J. Gao, S. Zhang, J.F. Li, Adv. Mater. (2017). https://doi.org/10.1002/adma.201701824

    Article  Google Scholar 

  21. N.N. Luo, K. Han, F.P. Zhuo et al., J. Mater. Chem. A 7, 14118 (2019). https://doi.org/10.1039/c9ta02053e

    Article  CAS  Google Scholar 

  22. Y. Tian, L. Jin, H. Zhang et al., J. Mater. Chem. A 5, 17525 (2017). https://doi.org/10.1039/c7ta03821f

    Article  CAS  Google Scholar 

  23. U. Bharagav, N.R. Reddy, K. Pratap et al., in Photocatalytic Systems by Design. ed. by M. Sakar, R.G. Balakrishna, T.-O. Do (Elsevier, New York, 2021)

    Google Scholar 

  24. I.O. Alade, Y. Zhang, X. Xu, N. J. Chem. 45, 15255 (2021). https://doi.org/10.1039/d1nj01523k

    Article  CAS  Google Scholar 

  25. H. Wei, C. Yang, Y. Wu, B. Cao, M. Lorenz, M. Grundmann, J. Mater. Chem. C 8, 15575 (2020). https://doi.org/10.1039/d0tc02811h

    Article  CAS  Google Scholar 

  26. J. Fabry, Z. Zikmund, A. Kania, V.V. Petricek, Acta Crystallogr. C 56(8), 916 (2000). https://doi.org/10.1107/s0108270100006806

    Article  Google Scholar 

  27. Y. Zhang, X. Xu, J. Magn. Magn. Mater. (2020). https://doi.org/10.1016/j.jmmm.2020.166998

    Article  Google Scholar 

  28. F. Zhuo, H. Qiao, J. Zhu et al., Chin. Chem. Lett. 32, 2097 (2021). https://doi.org/10.1016/j.cclet.2020.11.070

    Article  CAS  Google Scholar 

  29. Y. Zhang, X. Xu, AIP Adv. (2001). https://doi.org/10.1063/1.5144241

    Article  Google Scholar 

  30. A. Kania, J. Phys. D 34, 1447 (2001). https://doi.org/10.1088/0022-3727/34/10/302

    Article  CAS  Google Scholar 

  31. M.H. Francombe, B. Lewis, Acta. Crystallogr. 11, 175 (1958). https://doi.org/10.1107/s0365110x58000463

    Article  CAS  Google Scholar 

  32. M. Łukaszewski, M. Pawełczyk, J. Haňderek, A. Kania, Phase. Transit. 3, 247 (2006). https://doi.org/10.1080/01411598308243024

    Article  Google Scholar 

  33. L. Li, M. Spreitzer, D. Suvorov, Appl. Phys. Lett. (2014). https://doi.org/10.1063/1.4875581

    Article  Google Scholar 

  34. L. Zhao, Q. Liu, S. Zhang, J.-F. Li, J. Mater. Chem. C 4, 8380 (2016). https://doi.org/10.1039/c6tc03289c

    Article  CAS  Google Scholar 

  35. S. Li, T. Hu, H. Nie et al., Energy Storage Mater. 34, 417 (2021). https://doi.org/10.1016/j.ensm.2020.09.021

    Article  Google Scholar 

  36. N. Luo, K. Han, M.J. Cabral et al., Nat. Commun. 11, 4824 (2020). https://doi.org/10.1038/s41467-020-18665-5

    Article  CAS  Google Scholar 

  37. D. Yang, J. Gao, L. Shu et al., J. Mater. Chem. A 8, 23724 (2020). https://doi.org/10.1039/d0ta08345c

    Article  CAS  Google Scholar 

  38. H. Chen, J. Shi, X. Chen et al., J. Mater. Chem. A 9, 4789 (2021). https://doi.org/10.1039/d0ta11022a

    Article  CAS  Google Scholar 

  39. H. Qi, R. Zuo, A. Xie et al., Adv. Funct. Mater. (2019). https://doi.org/10.1002/adfm.201903877

    Article  Google Scholar 

  40. J. Ye, G. Wang, M. Zhou et al., J. Mater. Chem. C 7, 5639 (2019). https://doi.org/10.1039/c9tc01414d

    Article  CAS  Google Scholar 

  41. Z. Yang, H. Du, L. Jin et al., J. Mater. Chem. A 7, 27256 (2019). https://doi.org/10.1039/c9ta11314b

    Article  CAS  Google Scholar 

  42. W.-B. Li, D. Zhou, L.-X. Pang, J. Mater. Sci. 28, 8749 (2017). https://doi.org/10.1007/s10854-017-6600-8

    Article  CAS  Google Scholar 

  43. H. Yang, F. Yan, Y. Lin, T. Wang, ACS Sustain. Chem. Eng. 5, 10215 (2017). https://doi.org/10.1021/acssuschemeng.7b02203

    Article  CAS  Google Scholar 

  44. X. Kong, L. Yang, Z. Cheng, S. Zhang, J. Am. Ceram. Soc. 103, 1722 (2019). https://doi.org/10.1111/jace.16844

    Article  CAS  Google Scholar 

  45. J. Li, F. Li, Z. Xu, S. Zhang, Adv. Mater. (2018). https://doi.org/10.1002/adma.201802155

    Article  Google Scholar 

  46. Y. Wu, Y. Fan, N. Liu et al., J. Mater. Chem. C 7, 6222 (2019). https://doi.org/10.1039/c9tc01239g

    Article  CAS  Google Scholar 

  47. C. Cui, Y. Pu, J. Mater. Sci. 53, 9830 (2018). https://doi.org/10.1007/s10853-018-2282-8

    Article  CAS  Google Scholar 

  48. C. Luo, Q. Feng, N. Luo et al., Chem. Eng. J. (2021). https://doi.org/10.1016/j.cej.2021.129861

    Article  Google Scholar 

  49. Z. Chen, X. Bai, H. Wang et al., Ceram. Int. 46, 11549 (2020). https://doi.org/10.1016/j.ceramint.2020.01.181

    Article  CAS  Google Scholar 

  50. H. Sun, X. Wang, Q. Sun et al., J. Eur. Ceram. Soc. 40, 2929 (2020). https://doi.org/10.1016/j.jeurceramsoc.2020.03.012

    Article  CAS  Google Scholar 

  51. Z. Lu, W. Bao, G. Wang et al., Nano Energy (2021). https://doi.org/10.1016/j.nanoen.2020.105423

    Article  Google Scholar 

  52. Y. Tian, L. Jin, Q. Hu et al., J. Mater. Chem. A 7, 834 (2019). https://doi.org/10.1039/c8ta10075f

    Article  CAS  Google Scholar 

  53. W. Chao, T. Yang, Y. Li, Z. Liu, J. Am. Ceram. Soc. 103, 7283 (2020). https://doi.org/10.1111/jace.17415

    Article  CAS  Google Scholar 

  54. J. Gao, Q. Liu, J. Dong, X. Wang, S. Zhang, J.F. Li, ACS Appl. Mater. Inter. 12, 6097 (2020). https://doi.org/10.1021/acsami.9b20803

    Article  CAS  Google Scholar 

  55. F. Li, M. Zhou, J. Zhai, B. Shen, H. Zeng, J. Eur. Ceram. Soc. 38, 4646 (2018). https://doi.org/10.1016/j.jeurceramsoc.2018.06.038

    Article  CAS  Google Scholar 

  56. C.W. Ahn, G. Amarsanaa, S.S. Won, S.A. Chae, D.S. Lee, I.W. Kim, ACS Appl. Mater. Inter. 7, 26381 (2015). https://doi.org/10.1021/acsami.5b08786

    Article  CAS  Google Scholar 

  57. J. Shi, X. Chen, X. Li et al., J. Mater. Chem. C 8, 3784 (2020). https://doi.org/10.1039/c9tc06711f

    Article  CAS  Google Scholar 

  58. N. Luo, K. Han, F. Zhuo et al., J. Mater. Chem. C 7, 4999 (2019). https://doi.org/10.1039/c8tc06549g

    Article  CAS  Google Scholar 

  59. Z Liu, T Lu, J Ye, et al. (2018) Adv. Mater. Technol. https://doi.org/10.1002/admt.201800111

  60. K. Han, N. Luo, S. Mao et al., J. Mater. Chem. A 7, 26293 (2019). https://doi.org/10.1039/c9ta06457e

    Article  CAS  Google Scholar 

  61. M. Yashima, S. Matsuyama, R. Sano, M. Itoh, K. Tsuda, D. Fu, Chem. Mater. 23, 1643 (2011). https://doi.org/10.1021/cm103389q

    Article  CAS  Google Scholar 

  62. H.U. Khan, K. Alam, M. Mateenullah, T. Blaschke, B.S. Haq, J. Eur. Ceram. Soc. 35, 2775 (2015). https://doi.org/10.1016/j.jeurceramsoc.2015.04.007

    Article  CAS  Google Scholar 

  63. I. Levin, J.C. Woicik, A. Llobet et al., Chem. Mater. 22, 4987 (2010). https://doi.org/10.1021/cm101263p

    Article  CAS  Google Scholar 

  64. S. Li, H. Nie, G. Wang et al., J. Mater. Chem. C 7, 1551 (2019). https://doi.org/10.1039/c8tc05458d

    Article  CAS  Google Scholar 

  65. T. Tunkasiri, G. Rujijanagul, J. Mater. Sci. Lett. 15, 1767 (1996). https://doi.org/10.1007/bf00275336

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 11464006) and Guangxi Key Laboratory of Information Materials (Grant No. 191026–Z).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changlai Yuan, Baohua Zhu or Guanghui Rao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, D., Lan, Y., Yuan, C. et al. Enhanced energy storage density of antiferroelectric AgNbO3-based ceramics by Bi/Ta modification at A/B sites. J Mater Sci: Mater Electron 33, 3081–3090 (2022). https://doi.org/10.1007/s10854-021-07511-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07511-z

Navigation