Skip to main content
Log in

Improvement of properties of ZnO varistors by low-temperature two-step sintering method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In order to reduce the volatilization of Bi2O3 in the sintering process due to low melting point, and improve the microstructure uniformity of samples obtained by ball milling, ZnO–Bi2O3 varistor ceramics were prepared by two-step sintering method with sintering temperature lower than 1000 °C. This two-step method was contrary to most previous research, which owed lower turning point temperature T1. The samples were first heated up to T1(T1 = 750 °C, 800 °C and 850 °C, respectively) before sintering at T2(T2 = 950 °C), while T1 was selected based on the sintering characteristics. Samples prepared by traditional one-step sintering were used as reference. Microstructure and electrical properties of ceramics were investigated to discuss the enhanced effect of two-step sintering regimes. Results showed that the two-step sintered samples had higher breakdown voltage, higher relative density and uniform microstructure. The best performance was obtained when T1 was 800 °C and T2 was 950 °C, the breakdown voltage was 883 V/mm, the nonlinear coefficient was 10.1, the leakage current was below 0.1 μA. This special two-step sintering method also contributed to avoiding high-temperature and obtain better composite performance. The work may supply useful reference for the exploration and application of low-temperature silver co-fired multilayer chip device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

Code availability

Not applicable.

References

  1. S. Ma, Z. Xu, R. Chu, J. Hao, M. Liu, L.H. Cheng, G. Li, Influence of Cr2O3 on ZnO-Bi2O3-MnO2-based varistor ceramics. Ceram. Int. 40(7), 10149–10152 (2014). https://doi.org/10.1016/j.ceramint.2014.02.035

    Article  CAS  Google Scholar 

  2. X.K. Xiao, L.Y. Zheng, L.H. Cheng, T. Tian, X.Z. Ruan, G.R. Li, Effect of Cr2O3 on the property and microstructure of ZnO-Bi2O3 varistor ceramics in different sintering temperature. Ceram. Int. 41, S557–S562 (2015). https://doi.org/10.1016/j.ceramint.2015.03.137

    Article  CAS  Google Scholar 

  3. Y. Wang, H.B. Qi, Q. Wang, Z.J. Peng, X.L. Fu, Effect of thermal treatment time on high-performance varistors prepared by hot-dipping oxygen-deficient zinc oxide thin films in bismuth oxide powder. J. Mater. Sci. Mater. Electron. 29(24), 20885–20894 (2018). https://doi.org/10.1007/s10854-018-0232-5

    Article  CAS  Google Scholar 

  4. J. Wong, Sintering and varistor characteristics of ZnO-Bi2O3 ceramic. J. Appl. Phys. 51(8), 4453–4459 (1980). https://doi.org/10.1063/1.328266

    Article  CAS  Google Scholar 

  5. P.F. Meng, S.L. Lyu, J. Hu, J.L. He, Tailoring low leakage current and high nonlinear coefficient of a Y-doped ZnO varistor by indium doping. Mater. Lett. 188, 77–79 (2017). https://doi.org/10.1016/j.matlet.2016.10.100

    Article  CAS  Google Scholar 

  6. M. Cao, X. Wang, M. Zhang, Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv. Funct. Mater. 29(25), 1807398 (2019). https://doi.org/10.1002/adfm.201807398

    Article  CAS  Google Scholar 

  7. K. Eda, Conduction mechanism of non-Ohmic zinc oxide ceramics. J. Appl. Phys. 49(5), 2964–2972 (1978). https://doi.org/10.1063/1.325139

    Article  CAS  Google Scholar 

  8. R. Metz, H. Delalu, J.R. Vignalou, N. Achard, M. Elkhatib, Electrical properties of varistors in relation to their true bismuth composition after sintering. Mater. Chem. Phys. 63(2), 157–162 (2000). https://doi.org/10.1016/S0254-0584(99)00227-8

    Article  CAS  Google Scholar 

  9. D. Xu, X.N. Cheng, X.H. Yan, X. Hong, Sintering process as relevant parameter for Bi2O3 vaporization from ZnO-Bi2O3-based varistor ceramics. Trans. Nonferr Metal Soc 19, 1526–1532 (2009). https://doi.org/10.1016/S1003-6326(09)60064-9

    Article  CAS  Google Scholar 

  10. S. Bernik, N. Daneu, A. Recnik, Inversion boundary induced grain growth in TiO2 or Sb2O3 doped ZnO-based varistor ceramics. J. Eur. Ceram. Soc. 24(15–16), 3703–3708 (2004). https://doi.org/10.1016/j.jeurceramsoc.2004.03.004

    Article  CAS  Google Scholar 

  11. C. Leach, Grain boundary structures in zinc oxide varistors. Acta. Mater. 53(2), 237–245 (2005). https://doi.org/10.1016/j.actamat.2004.07.006

    Article  CAS  Google Scholar 

  12. Y.C. Lu, Y.X. Li, R. Peng, H. Su, Z.H. Tao, M.Z. Chen, D.M. Chen, Low temperature sintering and electrical properties of BBSZ glass doped ZnO-based multilayer varistors. Int. J. Appl. Ceram. Technol. 17(1), 1–6 (2019). https://doi.org/10.1111/ijac.13367

    Article  CAS  Google Scholar 

  13. M.M. Shahraki, S.A. Shojaee, M. Sani, A. Nemati, I. Safaee, Two-step sintering of ZnO varistors. Solid State Ion. 190(1), 99–105 (2011). https://doi.org/10.1016/j.ssi.2010.06.026

    Article  CAS  Google Scholar 

  14. M.M. Shahraki, M.D. Chermahini, S. Alipour, P. Mahmoudi, M. Abdollahi, Ultra-high voltage SnO2 based varistors prepared at low temperature by two-step sintering. J. Alloys Compd. 805, 794–801 (2019). https://doi.org/10.1016/j.jallcom.2019.07.138

    Article  CAS  Google Scholar 

  15. Z. Fu, J. He, J. Lu, Z. Fang, B. Wang, Investigation of dielectric relaxation and degradation behavior of two-step sintered ZnO varistors. Ceram. Int. 45(17), 21900–21909 (2019). https://doi.org/10.1016/j.ceramint.2019.07.201

    Article  CAS  Google Scholar 

  16. Y.L. Zhang, R.Q. Tan, Y. Yang, X.P. Zhang, W.Y. Wang, P. Cui, W.J. Song, Two-step sintering of pristine and aluminum-doped zinc oxide ceramics. Int. J. Appl. Ceram. Technol. 9(3), 1–8 (2011). https://doi.org/10.1111/j.1744-7402.2011.02702.x

    Article  CAS  Google Scholar 

  17. R. Gunnewiek, R. Kiminami, Two-step microwave sintering of nanostructured ZnO-based varistors. Ceram. Int. 43(1), 847–853 (2016). https://doi.org/10.1016/j.ceramint.2016.10.019

    Article  CAS  Google Scholar 

  18. A. Badev, S. Marinel, R. Heuguet, E. Savary, D. Agrawal, Sintering behavior and non-linear properties of ZnO varistors processed in microwave electric and magnetic fields at 2.45 GHz. Acta. Mater. 61(20), 7849–7858 (2013). https://doi.org/10.1016/j.actamat.2013.09.023

    Article  CAS  Google Scholar 

  19. S. Wan, W.Z. Lu, X.C. Wang, Low-temperature sintering and electrical properties of ZnO–Bi2O3–TiO2–Co2O3–MnCO3-based varistor with Bi2O3–B2O3 frit for multilayer chip varistor applications. J. Am. Ceram. Soc. 93(10), 3313 (2010). https://doi.org/10.1111/j.1551-2916.2010.03866.x

    Article  CAS  Google Scholar 

  20. S. Roy, D. Das, T.K. Roy, Two stage sintering behaviour of Er2O3 doped high performance ZnO varistors. J. Eur. Ceram. Soc. (2021). https://doi.org/10.1016/j.jeurceramsoc.2021.04.009

    Article  Google Scholar 

  21. W. Lin, Z. Xu, Z. Wang, Influence of Bi3Zn2Sb3O14 pre-synthesis phase on electrical properties of the ZnO-Bi2O3 based varistor ceramics. J. Alloys Compd. 834, 155070 (2020). https://doi.org/10.1016/j.jallcom.2020.155070

    Article  CAS  Google Scholar 

  22. S. Bernik, L.H. Cheng, M. Podlogar, G.R. Li, Low-temperature sintering of ZnO-Bi2O3-based varistor ceramics for enhanced microstructure development and current-voltage characteristics. Ceram. Silikaty. 62(1), 8–14 (2018). https://doi.org/10.13168/cs.2017.0040

    Article  CAS  Google Scholar 

  23. I.W. Chen, X.H. Wang, Sintering dense nanocrystalline ceramics without final-stage grain growth. Nature 404(6774), 168 (2000). https://doi.org/10.1038/35004548

    Article  CAS  Google Scholar 

  24. J.L. Huang, K.B. Li, The effects of heat-treatment on B2O3-contained ZnO varistor. J. Mater. Res. 9(6), 1526–1532 (1994). https://doi.org/10.1557/JMR.1994.1526

    Article  CAS  Google Scholar 

  25. F. Schipani, C.M. Aldao, M.A. Ponce, Inadequacy of the Mott-Schottky equation in strongly pinned double Schottky barriers with no deep donors. J. Phys. D Appl. Phys. 45(49), 495302 (2012). https://doi.org/10.1088/0022-3727/45/49/495302

    Article  CAS  Google Scholar 

  26. X. Dong, L. Shi, Z. Wu, Q. Zhong, X. Wu, Microstructure and electrical properties of ZnO-Bi2O3-based varistor ceramics by different sintering processes. J. Eur. Ceram. Soc. 29(9), 1789–1794 (2009). https://doi.org/10.1016/j.jeurceramsoc.2008.10.020

    Article  CAS  Google Scholar 

  27. M.L. Arefin, F. Raether, D. Dolej, A. Klimera, Phase formation during liquid phase sintering of ZnO ceramics. Ceram. Int. 35(8), 3313–3320 (2009). https://doi.org/10.1016/j.ceramint.2009.05.030

    Article  CAS  Google Scholar 

  28. M. Takada, Y. Sato, S. Yoshikado, Relation between grain boundary structure and electrical degradation in zinc oxide varistors. J. Am. Ceram. Soc 95(8), 2579–2586 (2012). https://doi.org/10.1111/j.1551-2916.2012.05212.x

    Article  CAS  Google Scholar 

  29. E. Olsson, G.L. Dunlop, Characterization of individual interfacial barriers in a ZnO varistor material. J. Appl. Phys. 66(8), 3666–3675 (1989). https://doi.org/10.1063/1.344453

    Article  CAS  Google Scholar 

  30. L.H. Cheng, L.Y. Zheng, J.T. Zeng, J.T. Zeng, Y. Gu, F.P. Zhang, Analysis of high-voltage ZnO varistor prepared from a novel chemically aided method. J. Am. Ceram. Soc. 93(9), 2522–2525 (2010). https://doi.org/10.1111/j.1551-2916.2010.03865.x

    Article  CAS  Google Scholar 

  31. E. Koga, M. Hogiri, Y. Higashi, Analysis of grain-boundary in SrCoO3-doped ZnO varistors and its electrical characteristics. Key Eng. Mater. 582, 181–184 (2014). https://doi.org/10.4028/www.scientific.net/KEM.582.181

    Article  CAS  Google Scholar 

  32. J. He, C. Cheng, J. Hu, Electrical degradation of double-Schottky barrier in ZnO varistors. AIP Adv. 6(3), 30701 (2016). https://doi.org/10.1063/1.4944485

    Article  CAS  Google Scholar 

  33. C. Leach, K. Vernon-Parry, The effect of sintering temperature on the development of grain boundary traps in zinc oxide based varistors. J. Mater. Sci. 41(12), 3815–3819 (2006). https://doi.org/10.1007/s10853-006-7066-x

    Article  CAS  Google Scholar 

  34. M. Zhao, H. Song, W. Cui, Low temperature sintering and characterization of 0.25–1 mol% Bi2O3 doped ZnBiMnNbO based varistor ceramics. Ceram. Int. (2021). https://doi.org/10.1016/j.ceramint.2021.05.050

    Article  Google Scholar 

  35. F. Cui, Z. Xu, R. Chu, G. Li, Improving electrical properties of ZnO-Bi2O3-Sb2O3-MnO2 varistors by doping with pre-synthesized Bi–Si–O phase. J. Alloys Compd. 836, 154692 (2020). https://doi.org/10.1016/j.jallcom.2020.154692

    Article  CAS  Google Scholar 

  36. H.R. Bai, M.M. Li, Z.J. Xu, R.Q. Chu, J.G. Hao, H.Y. Li, C. Chen, G.R. Li, Influence of SiO2 on electrical properties of the highly nonlinear ZnO-Bi2O3-MnO2 varistors. J. Eur. Ceram. Soc. 37(13), 3965–3971 (2017). https://doi.org/10.1016/j.jeurceramsoc.2017.05.014

    Article  CAS  Google Scholar 

  37. S. Ma, Z.J. Xu, R.Q. Chu, J.G. Hao, L.H. Cheng, G.R. Li, Low-temperature sintering and electrical properties of Co-doped ZnO varistors. J. Mater. Sci. Mater. Electron. 25(9), 3878–3884 (2014). https://doi.org/10.1007/s10854-014-2102-0

    Article  CAS  Google Scholar 

  38. J. Han, A. Senos, P.Q. Mantas, Varistor behaviour of Mn-doped ZnO ceramics. J. Eur. Ceram. Soc. 22(9–10), 1653–1660 (2002). https://doi.org/10.1016/S0955-2219(01)00484-8

    Article  CAS  Google Scholar 

  39. M. Zhang, M.S. Cao, J.C. Shu, Electromagnetic absorber converting radiation for multifunction. Mat. Sci. Eng. R. 145, 100627 (2021). https://doi.org/10.1016/j.mser.2021.100627

    Article  Google Scholar 

  40. C. Chen, Q. Liu, W. Li, S. Dong, J. Cheng, Influence of a Zn-Bi-Sb-O synthetic multi-phase on highly nonlinear properties of ZnO-Bi2O3 varistor ceramics. J. Electron. Mater. 48(11), 7352–7359 (2019). https://doi.org/10.1007/s11664-019-07560-5

    Article  CAS  Google Scholar 

  41. Q.Y. Fu, C.F. Ke, Y.X. Hu, Z.P. Zheng, T. Chen, Y.Y. Xu, Al-doped ZnO varistors prepared by a two-step doping process. Adv. Appl. Ceram. 117, 1–6 (2018). https://doi.org/10.1080/17436753.2017.1405556

    Article  CAS  Google Scholar 

Download references

Funding

The authors acknowledge financial supported from Open subject of key Laboratory of Inorganic Functional Materials and Devices, Chinese Academy of Sciences, 2017 (Project Number KLIFMD201701), the National Natural Science Foundation of China (51862009), the Science and Technology Research Project of Jiangxi Education Department in 2019 (GJJ190585), Jiangxi Provincial Natural Science Foundation (20212BAB204019, 20202BABL204016), School Youth Top Talent Program of JXSTNU (2019QNBJRC006, 2018QNBJRC005).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: LC, WL; Methodology: LC; Formal analysis and investigation: LC, WL, JA; Writing—original draft preparation: WL; Writing—review and editing: WL, LC, WL, JA; Funding acquisition: JA; Supervision: LC, WL.

Corresponding author

Correspondence to Lihong Cheng.

Ethics declarations

Conflict of interest

The authors declare that they have no financial and personal relationships with other people or organizations that can inappropriately influence this work.

Ethical approval

Not applicable.

Informed consent

All the authors consent for submitting it to the Journal of Materials Science: Materials in Electronics for publication.

Consent to participate

All the authors listed have approved the manuscript that is enclosed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Ai, J., Li, W. et al. Improvement of properties of ZnO varistors by low-temperature two-step sintering method. J Mater Sci: Mater Electron 33, 23918–23926 (2022). https://doi.org/10.1007/s10854-021-07510-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07510-0

Navigation