Skip to main content
Log in

Facile fabrication method and decent humidity sensing of anodised nanotubular Ta2O5 on Ta foil substrate

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, nanotubular structures were prepared on tantalum film via anodisation using an organic-based electrolyte. Nanotubular tantalum pentoxide (Ta2O5) was synthesised at 30 and 60 min and fabricated as a humidity sensor. The significant growth of anodised nanotubular Ta2O5 has increased the number of pore structures and offered more water absorption active sites for humidity sensing detection. Both anodised samples were annealed to transform an amorphous structure to a cubic crystal structure, where the presence of more crystalline peaks was justified by the XRD spectra. The formation of pore size was proven by FESEM images and the density of pore distribution of the 60-min sensor was higher than the 30-min sensor with a diameter of 10–50 nm and 15–20 nm, respectively. Both fabricated sensors were tested for humidity detection in the range of 40–90% humidity level. Based on the results obtained, the 60-min sensor operated at 10 V possessed the highest sensitivity, low hysteresis, and improved stability compared to the 30-min sensor operated at the same bias voltage. Thus, this paper has elucidated the relationship of anodising time during nanostructure construction towards the variation of current output in humidity sensing due to the availability of oxygen vacancies and active sites as an effort to improve humidity sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. G. Korotcenkov, B.K. Cho, Sens. Actuators B 244, 182 (2016). https://doi.org/10.1016/j.snb.2016.12.117

    Article  CAS  Google Scholar 

  2. A. Dey, Mater. Sci. Eng. B 229, 206 (2018). https://doi.org/10.1016/j.mseb.2017.12.036

    Article  CAS  Google Scholar 

  3. J.N. Hasnidawani, H.N. Azlina, H. Norita, N.N. Bonnia, Procedia Chem. 19, 211 (2016). https://doi.org/10.1016/j.proche.2016.03.095

    Article  CAS  Google Scholar 

  4. Z. Zhang, Z. Wen, Z. Ye, L. Zhu, J. Alloys Compd. 727, 436 (2017). https://doi.org/10.1016/j.jallcom.2017.07.181

    Article  CAS  Google Scholar 

  5. J. Huang, K. Zhang, Y. Lai, Handb. Nanoelectrochem. (2016). https://doi.org/10.1007/978-3-319-15266-0_17

    Article  Google Scholar 

  6. M.M. Momeni, M. Mirhosseini, M. Chavoshi, Surf. Eng. 33, 83 (2015). https://doi.org/10.1179/1743294415Y.0000000071

    Article  CAS  Google Scholar 

  7. R.V. Gonçalves, H. Wender, P. Migowski, A.F. Feil, D. Eberhardt, J. Boita, S. Khan, G. Machado, J. Dupont, S.R. Teixeira, J. Phys. Chem. 121, 5855 (2017). https://doi.org/10.1021/acs.jpcc.6b10540

    Article  CAS  Google Scholar 

  8. A. Salamat, T. Islam, Instrum. Sci. Technol. 48, 128 (2020). https://doi.org/10.1080/10739149.2019.1662803

    Article  CAS  Google Scholar 

  9. D. Nunes, A. Pimentel, A. Gonçalves, S. Pereira, R. Branquinho, P. Barquinha, E. Fortunato, R. Martins, Semicond. Sci. Technol. (2017). https://doi.org/10.1088/1361-6641/ab011e

    Article  Google Scholar 

  10. S. Pratibha, B. Chethan, Y.T. Ravikiran, N. Dhananjaya, V.J. Angadi, Sens. Actuators A 304, 111903 (2020). https://doi.org/10.1016/j.sna.2020.111903

    Article  CAS  Google Scholar 

  11. H. Ma, H. Fang, W. Wu, C. Zheng, L. Wu, H. Wang, R. Soc. Chem. 10, 25467 (2020). https://doi.org/10.1039/D0RA03958F

    Article  CAS  Google Scholar 

  12. R.S. Khaleel, M.S. Hashim, Kuwait J. Sci. 47, 42 (2020)

    CAS  Google Scholar 

  13. C.K. Chung, O.K. Khor, E.H. Kuo, C.A. Ku, Mater. Lett. 260, 126921 (2020). https://doi.org/10.1016/j.matlet.2019.126921

    Article  CAS  Google Scholar 

  14. D.L. Gapale, S.A. Arote, B.M. Palve, S.N. Dalvi, R.Y. Borse, Mater. Res. Express (2018). https://doi.org/10.1088/2053-1591/aae970

    Article  Google Scholar 

  15. S. Singh, G. Gupta, S. Yadav, P.K. Dubey, Sens. Actuators A 295, 133 (2019). https://doi.org/10.1016/j.sna.2019.05.023

    Article  CAS  Google Scholar 

  16. Y. Freeman, J.S. State, S. Technol, ECS J. Solid State Sci. Technol. (2017). https://doi.org/10.1149/2.0031708jss

    Article  Google Scholar 

  17. N.L.S. Ngadiman, R.A. Rani, S.R. Makhsin, M.A. Ayub, N.H. Saad, M. Zolkipli, A.S. Zoolfakar, 2020 IEEE International Conference on Semiconductor Electronics. (2020). https://doi.org/10.1109/ICSE49846.2020.9166891

  18. M.A. Abu Talip, N.S. Khairir, R.A. Kadir, M.H. Mamat, R.A. Rani, M.R. Mahmood, A.S. Zoolfakar, J. Mater. Sci.: Mater. Electron. 30, 4953 (2019). https://doi.org/10.1007/s10854-019-00792-5

    Article  CAS  Google Scholar 

  19. H. Li, H. Guo, K. Huang, B. Liu, C. Zhang, X. Chen, X. Xu, J. Yang, Appl. Phys. A (2018). https://doi.org/10.1007/s00339-018-2182-4

    Article  Google Scholar 

  20. C. Mayousse, C. Celle, A. Fraczkiewicz, J.-P. Simonato, Nanoscale (2014). https://doi.org/10.1039/C4NR06783E

    Article  Google Scholar 

  21. R.A. Rani, A. Sabirin, M.F. Mohamad, A.S. Ismail, M.H. Mamat, J. Electron. Mater. 48, 3805 (2019). https://doi.org/10.1007/s11664-019-07126-5

    Article  CAS  Google Scholar 

  22. L. Manjakkal, K. Cvejin, J. Kulawik, K. Zaraska, R.P. Socha, D. Szwagierczak, Anal. Chim. Acta J. 931, 47 (2016). https://doi.org/10.1016/j.aca.2016.05.012

    Article  CAS  Google Scholar 

  23. M. Sarraf, B.A. Razak, A. Dabbagh, N.H. Abu, W.J. Basirun, E. Bin, J. Mech. Behav. Biomed. Mater. 66, 129 (2016). https://doi.org/10.1016/j.jmbbm.2016.11.012

    Article  CAS  Google Scholar 

  24. W. Wei, J.M. Macak, P. Schmuki, Electrochem. Commun. 10, 428 (2008). https://doi.org/10.1016/j.elecom.2008.01.004

    Article  CAS  Google Scholar 

  25. M.R. Nickel, G. Melligan, T.P.W. Mcmullen, R.E. Burrell, Thin Solid Films 685, 245 (2019). https://doi.org/10.1016/j.tsf.2019.06.033

    Article  CAS  Google Scholar 

  26. S. Minagar, C. Berndt, C. Wen, J. Funct. Biomater. 6, 153 (2015). https://doi.org/10.3390/jfb6020153

    Article  CAS  Google Scholar 

  27. R.S. Brown, Investigating the Properties and Application of Tantalum Pentoxide Nanostructures for Cancer Radiotherapy (University of Wollongong, Wollongong, 2017)

    Google Scholar 

  28. R. Nakamura, K. Asano, M. Ishimaru, K. Sato, M. Takahashi, H. Numakura, J. Mater. Res. 29, 753 (2014). https://doi.org/10.1557/jmr.2014.44

    Article  CAS  Google Scholar 

  29. N.L.S. Ngadiman, R.A. Rani, Z.F. Zulkifli, M.F. Abdullah, S.R. Makhsin, M. Zolkapli, A.S. Zoolfakar, M. Nour, Proceedings—2021 IEEE Regional Symposium Micro Nanoelectronics RSM 2021. (2021) https://doi.org/10.1109/RSM52397.2021.9511581

  30. D. Lan, X. Zhao, F. Wang, C. Ai, D. Wen, H. Zhang, Int. J. Mod. Phys. B 32, 1 (2018). https://doi.org/10.1142/S0217979218501990

    Article  CAS  Google Scholar 

  31. Z. Chen, C. Lu, Sens. Lett. 3, 274 (2005). https://doi.org/10.1166/sl.2005.045

    Article  CAS  Google Scholar 

  32. Y. Li, K. Nagato, J. Delaunay, J. Kubota, Nanotechnology (2014). https://doi.org/10.1088/0957-4484/25/1/014013

    Article  Google Scholar 

  33. W. Chen, Q. Tu, H. Wu, C. Zhao, X. Yao, W. Fan, S. Zhang, J. Ni, X. Zhang, Electrochim. Acta 236, 140 (2017). https://doi.org/10.1016/j.electacta.2017.03.024

    Article  CAS  Google Scholar 

  34. R.A. Rani, S. Zoolfakar, A.P.O. Mullane, M.W. Austin, K. Kalantar-zadeh, J. Mater. Chem. A 2, 15683 (2014). https://doi.org/10.1039/C4TA02561J

    Article  CAS  Google Scholar 

  35. S. Maeng, L. Axe, T. Tyson, A. Jiang, J. Electrochem. Soc. (2005). https://doi.org/10.1149/1.1850362

    Article  Google Scholar 

  36. S.W. Park, J.M. Choi, K.H. Lee, H.W. Yeom, S. Im, Y.K. Lee, J. Phys. Chem. B 114, 5661 (2010). https://doi.org/10.1021/jp910459p

    Article  CAS  Google Scholar 

  37. R.P. Wang, S.J. Madden, C.J. Zha, A.V. Rode, B. Luther-Davies, J. Appl. Phys. 100, 1 (2006). https://doi.org/10.1063/1.2353787

    Article  CAS  Google Scholar 

  38. A. Sharma, Y. Kumar, P.M. Shirage, J. Mater. Sci.: Mater. Electron. 29, 10769 (2018). https://doi.org/10.1007/s10854-018-9143-8

    Article  CAS  Google Scholar 

  39. V. Uvarov, I. Popov, Mater. Charact. 85, 111–123 (2013). https://doi.org/10.1016/j.matchar.2013.09.002

    Article  CAS  Google Scholar 

  40. W. Yue, W. Zhou, Prog. Nat. Sci. 18, 1329 (2008). https://doi.org/10.1016/j.pnsc.2008.05.010

    Article  CAS  Google Scholar 

  41. W. Lisowski, G. Trykowski, Nanomaterials 9, 1347 (2019). https://doi.org/10.3390/nano9101347

    Article  CAS  Google Scholar 

  42. R.V. Gonçalves, P. Migowski, H. Wender, A.F. Feil, M.J.M. Zapata, S. Khan, F. Bernardi, G.M. Azevedo, S.R. Teixeira, CrystEngComm 16, 797 (2014). https://doi.org/10.1039/c3ce42043d

    Article  CAS  Google Scholar 

  43. W. Ren, G.D. Yang, A.L. Feng, R.X. Miao, J.B. Xia, Y.G. Wang, J. Adv. Ceram. 10, 704 (2021). https://doi.org/10.1007/s40145-021-0465-2

    Article  CAS  Google Scholar 

  44. M.H. Feng, W.C. Wang, X.J. Li, J. Alloys Compd. 698, 94 (2017). https://doi.org/10.1016/j.jallcom.2016.11.370

    Article  CAS  Google Scholar 

  45. H.A. Gatea, J. Mater. Sci.: Mater. Electron. 31, 22119 (2020). https://doi.org/10.1007/s10854-020-04714-8

    Article  CAS  Google Scholar 

  46. D. Zhang, H. Chang, P. Li, R. Liu, Q. Xue, Sens. Actuators B 225, 233 (2016). https://doi.org/10.1016/j.snb.2015.11.024

    Article  CAS  Google Scholar 

  47. S.C. Vijayakumari, C.H.V.V. Ramana, S. Thomas, D. Kim, Talanta 196, 337 (2018). https://doi.org/10.1016/j.talanta.2018.12.072

    Article  CAS  Google Scholar 

  48. X. Cha, F. Yu, Y. Fan, J. Chen, L. Wang, Q. Xiang, Z. Duan, J. Xu, Sens. Actuators B 263, 436 (2018). https://doi.org/10.1016/j.snb.2018.01.110

    Article  CAS  Google Scholar 

  49. K. Rathi, K. Pal, ACS Omega 2, 842 (2017). https://doi.org/10.1021/acsomega.6b00399

    Article  CAS  Google Scholar 

  50. M.A. Mir, M.A. Shah, P.A. Ganai, J. Solid State Electrochem. 24, 1679 (2020). https://doi.org/10.1007/s10008-020-04683-2

    Article  CAS  Google Scholar 

  51. J.J. Steele, M.T. Taschuk, M.J. Brett, IEEE Sens. J. 8, 1422 (2008). https://doi.org/10.1109/JSEN.2008.920715

    Article  CAS  Google Scholar 

  52. Y. Zhang, K. Yu, D. Jiang, Z. Zhu, H. Geng, L. Luo, Appl. Surf. Sci. 242, 212 (2005). https://doi.org/10.1016/j.apsusc.2004.08.013

    Article  CAS  Google Scholar 

  53. H. Farahani, R. Wagiran, M.N. Hamidon, Sensors 14, 7881 (2014). https://doi.org/10.3390/s140507881

    Article  CAS  Google Scholar 

  54. B. Chethan, H.G.R. Prakash, Y.T. Ravikiran, S.C. Vijayakumari, S. Thomas, Sens. Actuators B 296, 126639 (2019). https://doi.org/10.1016/j.snb.2019.126639

    Article  CAS  Google Scholar 

  55. Y. Zhang, H. Zou, J. Peng, Z. Duan, M. Ma, X. Xin, W. Li, X. Zheng, Sens. Actuators B 272, 459 (2018). https://doi.org/10.1016/j.snb.2018.06.007

    Article  CAS  Google Scholar 

  56. Y. Gu, Z. Ye, N. Sun, X. Kuang, W. Liu, X. Song, L. Zhang, W. Bai, J. Mater. Sci.: Mater. Electron. (2019). https://doi.org/10.1007/s10854-019-02230-y

    Article  Google Scholar 

  57. S. Manjunatha, T.M.Y.T. Ravikiran, B.C.M. Revanasiddappa, Appl. Phys. A 6, 104003 (2019). https://doi.org/10.1007/s00339-019-2638-1

    Article  CAS  Google Scholar 

  58. K.Z. Soderznik, C. Fabrega, F. Hernandez-Ramirez, J.D. Prades, Č Miran, Proceedings 15, 7 (2019). https://doi.org/10.3390/proceedings2019015009

    Article  Google Scholar 

  59. L.P.B. Reddy, H.G.R. Prakash, Y.T. Ravikiran, S.K. Ganiger, V.J. Angadi, J. Mater. Sci.: Mater. Electron. 31, 21981 (2020). https://doi.org/10.1007/s10854-020-04701-z

    Article  CAS  Google Scholar 

  60. S.Y. Hussein, S.A. Kakil, T.A.H. Abbas, L.H. Slewa, J. Mater. Sci.: Mater. Electron. 31, 15466 (2020). https://doi.org/10.1007/s10854-020-04109-9

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the Ministry of Education Malaysia (MOE) under the Fundamental Research Grant Scheme (FRGS) [Grant No. 600-IRMI/FRGS 5/3 (389/2019)].

Author information

Authors and Affiliations

Authors

Contributions

NLSN performed the experiments and analysed the data and wrote the manuscript. RAR helped to analyse the data, contributed to the final version of the manuscript, supervised the project, and is in charge of overall direction and planning. SRM and MAA helped to supervise the project. MAAT contributed to sample preparation. ASZ contributed to the design and implementation of the experiment.

Corresponding author

Correspondence to Rozina Abdul Rani.

Ethics declarations

Conflict of interest

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ngadiman, N.L.S., Abdul Rani, R., Makhsin, S.R. et al. Facile fabrication method and decent humidity sensing of anodised nanotubular Ta2O5 on Ta foil substrate. J Mater Sci: Mater Electron 33, 3065–3080 (2022). https://doi.org/10.1007/s10854-021-07509-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07509-7

Navigation