Skip to main content

Advertisement

Log in

Effect of fluorine doping on the optical and mechanical properties of bismuth-containing silicate and borate glasses

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We investigate the effect of fluorine doping on the optical bandgap and Young’s modulus of binary Bi2O3–SiO2 and Bi2O3–B2O3 glasses. Colorless Bi2O3–BiF3–SiO2 and Bi2O3–BiF3–B2O3 glasses, with very small photoelasticity and elastic constants compared with pure silica glass, are potential alternatives to lead-containing oxide glass in the development of optical components using polarization control in the visible wavelength range. The effects of fluorine doping are summarized for blueshifts in the optical bandgaps of up to ~ 0.3 eV from ~ 3.6 eV. The applied photoelastic constants remained small at ± (0.02–0.07) × 10−12 Pa−1, and the Young’s moduli were ~ 70 GPa after doping. However, no conclusive connection to the structural effect of fluorine doping, as examined by Fourier-transform infrared and Raman scattering spectroscopies, was made, although there is clear evidence of the compatible properties of wide optical bandgap, very small photoelastic constant, and large elastic constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data sharing and data citation are encouraged. All data generated or analyzed during this study are included in this published article.

References

  1. H. Hosono, M. Mizuguchi, H. Kawazoe, T. Ogawa, Effects of fluorine dimer excimer laser radiation on the optical transmission and defect formation of various types of synthetic SiO2 glasses. Appl. Phys. Lett. 74(19), 2755–2757 (1999). https://doi.org/10.1063/1.124004

    Article  CAS  Google Scholar 

  2. L. Vaccaro, M. Cannas, S. Girard, A. Alessi, A. Morana, A. Boukenter, Y. Ouerdane, R. Boscaino, Influence of fluorine on the fiber resistance studied through the nonbridging oxygen hole center related luminescence. J. Appl. Phys. 113(19), 193107 (2013). https://doi.org/10.1063/1.4807163

    Article  CAS  Google Scholar 

  3. K. Suzuki, G. Tricot, B. Revel, A. Saitoh, Properties and structure of SnO−SiO2 and SnO−SnF2−SiO2 glasses. J. Non-Cryst. Solids 527, 119706 (2020). https://doi.org/10.1016/j.jnoncrysol.2019.119706

    Article  CAS  Google Scholar 

  4. K. Hayashi, Y. Ishibashi, T. Shimizu, T. Asahi, A. Saitoh, Correlation with one- and two-photon absorptions in Bi2O3 containing B2O3 and SiO2 glasses with zero photoelastic constant. Appl. Phys. Express (2019). https://doi.org/10.7567/1882-0786/ab40f4

    Article  Google Scholar 

  5. A. Saitoh, M. Itadani, K. Suzuki, H. Takebe, H. Hosono, Optical properties and zero photoelastic constant of ns2-type metal cation containing oxide glasses. Opt. Quantum. Electron. 51, 302 (2019). https://doi.org/10.1007/s11082-019-2024-4

    Article  CAS  Google Scholar 

  6. A. Saitoh, S. Kitani, S. Matsuishi, H. Kawaji, H. Takebe, H. Hosono, Structure and photoelastic constant of binary ns2-type metal cation containing silicate glasses. J. Non-Cryst. Solids 521, 1195261–1195265 (2019). https://doi.org/10.1016/j.jnoncrysol.2019.119526

    Article  CAS  Google Scholar 

  7. H. Terasaki, N. Umeda, M. Tsukiji, Stabilized transverse Zeeman laser as a new light source for optical measurement. Appl. Opt. 19(3), 435–441 (1980). https://doi.org/10.1016/0022-3093(94)90349-2

    Article  Google Scholar 

  8. A. Saitoh, U. Hoppe, R.K. Brow, G. Tricot, Y. Hashida, H. Takebe, The structure and properties of xZnO–(67–x)SnO–33P2O5 glasses: (III) Photoelastic behavior. J. Non-Cryst. Solids 498, 173–176 (2018). https://doi.org/10.1016/j.jnoncrysol.2018.06.016

    Article  CAS  Google Scholar 

  9. Z. Pan, D.O. Henderson, S.H. Morgan, Vibrational spectra of bismuth silicate glasses and hydrogen-induced reduction effects. J. Non-Cryst. Solids 171(2), 134–140 (1994). https://doi.org/10.1016/0022-3093(94)90349-2

    Article  CAS  Google Scholar 

  10. Y. Kuromitsu, H. Yoshida, H. Takebe, K. Morinaga, Interaction between alumina and binary glasses. J. Am. Ceram. Soc. 80(6), 1583–1587 (1997). https://doi.org/10.1111/j.1151-2916.1994.tb07019.x

    Article  CAS  Google Scholar 

  11. V.L. Stolyarova, A.L. Shilov, S.I. Lopatin, S.M. Shugurov, High-temperature mass spectrometric study and modeling of thermodynamic properties of binary glass-forming systems containing Bi2O3. Rapid Commun. Mass Spectrom. 28(7), 801–810 (2014). https://doi.org/10.1002/rcm.6842

    Article  CAS  Google Scholar 

  12. L. Maya, crystalline compounds and glasses in the system B2O3-NaF-NaBF4. J. Am. Ceram. Soc. 60(7–8), 323–328 (1977). https://doi.org/10.1111/j.1151-2916.1977.tb15552.x

    Article  CAS  Google Scholar 

  13. K. Matusita, R. Yokota, T. Kimijima, T. Komatsu, C. Ihara, Composional trends in photoelastic constants of borate glasses. J. Am. Ceram. Soc. 67(4), 261–265 (1984). https://doi.org/10.1111/j.1151-2916.1984.tb18843.x

    Article  CAS  Google Scholar 

  14. A. Saitoh, K. Hayashi, K. Hanzawa, S. Ueda, S. Kawachi, J. Yamaura, K. Ide, J. Kim, G. Tricot, S. Matsuishi, K. Mitsui, T. Shimizu, M. Mori, H. Hosono, H. Hiramatsu, Origins of the coloration from structure and valence state of bismuth oxide glasses. J. Non-Cryst. Solids 560, 12072001–12072014 (2021). https://doi.org/10.1016/j.jnoncrysol.2021.120720

    Article  CAS  Google Scholar 

  15. P.K. Gupta, C.R. Kurkjian, Intrinsic failure and non-linear elastic behavior of glasses. J. Non-Cryst. Solids 351(27), 2324–2328 (2005). https://doi.org/10.1016/j.jnoncrysol.2005.05.029

    Article  CAS  Google Scholar 

  16. A. Makishima, J.D. Mackenzie, Direct calculation of Young’s modulus of glass. J. Non-Cryst. Solids 12, 35–45 (1973). https://doi.org/10.1016/0022-3093(73)90053-7

    Article  CAS  Google Scholar 

  17. A. Bajaj, A. Khanna, B. Chen, J.G. Longstaffe, U.W. Zwanziger, J.W. Zwanziger, Y. Gómez, F. González, Structural investigation of bismuth borate glasses and crystalline phases. J. Non-Cryst. Solids 355(1), 45–53 (2009). https://doi.org/10.1016/j.jnoncrysol.2008.09.033

    Article  CAS  Google Scholar 

  18. A. Winterstein-Beckmann, D. Möncke, D. Palles, E.I. Kamitsos, L. Wondraczek, A Raman-spectroscopic study of indentation-induced structural changes in technical alkali-borosilicate glasses with varying silicate network connectivity. J. Non-Cryst. Solids 405, 196–206 (2014). https://doi.org/10.1016/j.jnoncrysol.2014.09.020

    Article  CAS  Google Scholar 

  19. B. Suresh, M. SrinivasaReddy, A. SivaSeshaReddy, Y. Gandhi, V. RaviKumar, N. Veeraiah, Spectroscopic features of Ni2+ ion in PbO–Bi2O3–SiO2 glass system. Spectrochimica Acta Part A 141, 263–271 (2015). https://doi.org/10.1016/j.saa.2015.01.058

    Article  CAS  Google Scholar 

  20. S. Shibata, T. Kitagawa, M. Horiguchi, Fabrication of fluorine-doped silica glasses by the sol-gel method. J. Non-Cryst. Solids 100(1), 269–273 (1988). https://doi.org/10.1016/0022-3093(88)90030-0

    Article  CAS  Google Scholar 

  21. P. Tarte, Infra-red spectra of inorganic aluminates and characteristic vibrational frequencies of AlO4 tetrahedra and AlO6 octahedra. Spectrochim. Acta, Part A 23(7), 2127–2143 (1967). https://doi.org/10.1016/0584-8539(67)80100-4

    Article  CAS  Google Scholar 

  22. R. Iordanova, Y. Dimitriev, V. Dimitrov, S. Kassabov, D. Klissurski, Glass formation and structure in the V2O5–Bi2O3–Fe2O3 glasses. J. Non-Cryst. Solids 204(2), 141–150 (1996). https://doi.org/10.1016/S0022-3093(96)00416-4

    Article  CAS  Google Scholar 

  23. P. McMillan, Structural studies of silicate glasses and melts-applications and limitations of Raman spectroscopy. Am. Miner. 69, 622–644 (1984)

    CAS  Google Scholar 

  24. D.M. Krol, E.M. Rabinovich, Raman study of fluorine-doped silica gels. J. Non-Cryst. Solids 82(1), 143–147 (1986). https://doi.org/10.1016/0022-3093(86)90122-5

    Article  CAS  Google Scholar 

  25. M. Kyoto, Y. Ohoga, S. Ishikawa, Y. Ishiguro, Characterization of fluorine-doped silica glasses. J. Mater. Sci. 28(10), 2738–2744 (1993). https://doi.org/10.1007/BF00356211

    Article  CAS  Google Scholar 

  26. L. Baia, R. Stefan, W. Kiefer, S. Simon, Structural characteristics of B2O3–Bi2O3 glasses with high transition metal oxide content. J. Raman Spectrosc. 36(3), 262–266 (2005). https://doi.org/10.1016/S0022-3093(02)01042-6

    Article  CAS  Google Scholar 

  27. S. Hazra, S. Mandal, A. Ghosh, Properties of unconventional lithium bismuthate glasses. Phys. Rev. B 56(13), 8021–8025 (1997). https://doi.org/10.1103/PhysRevB.56.8021

    Article  CAS  Google Scholar 

  28. K.C. Sekhar, B. Kavitha, N. Narsimlu, V. Sathe, M.A. Alothman, I.O. Olarinoye, M.S. Al-Buriahi, M. Shareefuddin, Enhancement of shielding ability using PbF2 in Fe-reinforced bismuth borate glasses. J. Mater. Sci. 32(18), 23047–23065 (2021)

    CAS  Google Scholar 

  29. C.P.E. Varsamis, N. Makris, C. Valvi, E.I. Kamitsos, Short-range structure, the role of bismuth and property–structure correlations in bismuth borate glasses. Phys. Chem. Chem. Phys. 23(16), 10006–10020 (2021). https://doi.org/10.1039/D1CP00301A

    Article  CAS  Google Scholar 

  30. I.Z. Hager, M. El-Hofy, Investigation of spectral absorption and elastic moduli of lithium haloborate glasses. Physica Status Solidi (A) 198(1), 7–17 (2003). https://doi.org/10.1002/pssa.200305958

    Article  CAS  Google Scholar 

  31. B.N. Meera, J. Ramakrishna, Raman spectral studies of borate glasses. J. Non-Cryst. Solids 159(1), 1–21 (1993). https://doi.org/10.1016/0022-3093(93)91277-A

    Article  CAS  Google Scholar 

  32. Z. Pan, D.O. Henderson, S.H. Morgan, A Raman investigation of lead haloborate glasses. J. Chem. Phys. 101(3), 1767–1774 (1994). https://doi.org/10.1016/0022-3093(94)90349-2

    Article  CAS  Google Scholar 

  33. A. Hayashi, M. Nakai, M. Tatsumisago, T. Minami, Y. Himei, Y. Miura, M. Katada, Structural investigation of SnO–B2O3 glasses by solid-state NMR and X-ray photoelectron spectroscopy. J. Non-Cryst. Solids 306(3), 227–237 (2002). https://doi.org/10.1016/S0022-3093(02)01169-9

    Article  CAS  Google Scholar 

  34. D. Kline, P.J. Bray, Nuclear magnetic resonance investigations of the structure of glasses in the system NaF–Na2O–B2O3. Phys. Chem. Glasses 7, 41–51 (1966)

    CAS  Google Scholar 

  35. C. Jager, U. Haubenreisser, A reexamination of studies of the structure of NaF–Na2O–B2O3 glasses. Phys. Chem. Glasses 26, 152–156 (1985)

    Google Scholar 

  36. A. Saitoh, G. Tricot, P. Rajbhandari, S. Anan, H. Takebe, Effect of B2O3/P2O5 substitution on the properties and structure of tin boro-phosphate glasses. Mater. Chem. Phys. 149–150, 648–656 (2015). https://doi.org/10.1016/j.matchemphys.2014.11.021

    Article  CAS  Google Scholar 

  37. H. Mueller, The theory of photoelasticity. J. Am. Ceram. Soc. 21, 27–33 (1938). https://doi.org/10.1111/j.1151-2916.1938.tb15726.x

    Article  CAS  Google Scholar 

  38. M. Tashiro, The effects of the polarisation of constituent ions on the photoelastic birefringence of the glass. J. Soc. Glass. Technol. 40, 353T-362T (1956)

    Google Scholar 

  39. W.A. Weyl, E.C. Marboe, The Constitution of Glass (Wiley-Interscience, New York, 1964)

    Google Scholar 

  40. R.D. Shannon, R.X. Fischer, Empirical electronic polarizabilities in oxides, hydroxides, oxyfluorides, and oxychlorides. Phys. Rev. B 73(23), 2351111–23511128 (2006). https://doi.org/10.1103/PhysRevB.73.235111

    Article  CAS  Google Scholar 

  41. A. Walsh, G.W. Watson, D.J. Payne, R.G. Edgell, J. Guo, P.-A. Glans, T. Learmonth, K.E. Smith, Electronic structure of the a and d phases of Bi2O3: A combined ab initio and X-ray spectroscopy study. Phys. Rev. B 73(23), 235104 (2006). https://doi.org/10.1103/PhysRevB.73.235104

    Article  CAS  Google Scholar 

  42. S. Inaba, S. Fujino, K. Morinaga, Young’s modulus and compositional parameters of oxide glasses. J. Am. Ceram. Soc. 82, 3501–3507 (1999). https://doi.org/10.1111/j.1151-2916.1999.tb02272.x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Collaborative Research Project of Laboratory for Materials and Structures, Tokyo Institute of Technology. A.S. was partially supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI (Grant Numbers JP17K05041, JP21K04652). S.M. and H.H. were supported by the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) through the Element Strategy Initiative to Form Core Research Center (Grant Number JPMXP0112101001). H.H. was partially supported by JSPS KAKENHI (Grant Number 21H04612) and Design & Engineering by Joint Inverse Innovation for Materials Architecture, MEXT.

Author information

Authors and Affiliations

Authors

Contributions

A.S. involved in conceptualization, methodology, writing—original draft preparation, and supervision. K.H., T.S., and S.M. performed data curation. A.S., S.M., and H.H. participated in writing—review and editing. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Akira Saitoh.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work.

Ethical approval

The authors attest, all the experiments and procedures carried out in current study obey the standards ethics of the research committees, both international and national. Also, they declare that the submission is an exclusive to ‘‘Journal of Materials Science: Materials in Electronics (JMSE)’’ and not under consideration for publication elsewhere.

Informed consent

The content of the manuscript and the submission for publication in ‘‘Journal of Materials Science: Materials in Electronics (JMSE)’’ have been approved by all co-authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayashi, K., Shimizu, T., Matsuishi, S. et al. Effect of fluorine doping on the optical and mechanical properties of bismuth-containing silicate and borate glasses. J Mater Sci: Mater Electron 33, 2242–2256 (2022). https://doi.org/10.1007/s10854-021-07508-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07508-8

Navigation