Skip to main content

Advertisement

Log in

Structure, electrical properties and energy storage performance of BNKT-BMN ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, Bi(Mg2/3Nb1/3)O3 (BMN) was introduced to improve the electrical properties and energy storage performance of Bi0.5(Na0.82K0.18)0.5TiO3 (BNKT) ceramics, and the lead-free ceramics BNKT-xBMN (x = 0.02, 0.04, 0.06, 0.08, 0.10, 0.12, 0.14, 0.16) were synthesized via a traditional sintering process. The relaxation behavior and thermal stability of the materials were enhanced as well as the temperature corresponding to the maximum permittivity decreased monotonously from about 300 °C at x = 0, to 250 °C at x = 0.16 with the increasing of BMN content. Besides, a slim P-E loop with a large ∆P was obtained after doped BMN. Eventually, at a BMN doping level of 0.08, a BNKT-0.08BMN ceramic obtained high energy storage density of 2.20 J/cm3 as well as an acceptable efficiency of 55.7% under a low electric field of 110 kV/cm. Furthermore, a good temperature/frequency stability was achieved in BNKT-0.08BMN ceramic, as well as glorious fatigue behavior of energy storage properties. This work not only clarifies the internal relationship between the structure and properties of BNKT-BMN, but also provides useful insights for the optimization of electrical properties and energy storage behavior of lead-free energy storage bulk materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. X. Qiao, F. Zhang, D. Wu et al., Superior comprehensive energy storage properties in Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics. Chem. Eng. J. 388, 124158 (2020)

    Article  CAS  Google Scholar 

  2. H. Yang, P. Liu, F. Yan et al., A novel lead-free ceramic with layered structure for high energy storage applications. J. Alloys Compd. 773, 244–249 (2019)

    Article  CAS  Google Scholar 

  3. L. Zhang, Y. Pu, M. Chen et al., High energy-storage density under low electric fields and improved optical transparency in novel sodium bismuth titanate-based lead-free ceramics. J. Eur. Ceram. Soc. 40, 71–77 (2020)

    Article  Google Scholar 

  4. Q. Hu, Y. Tian, Q. Zhu et al., Achieve ultrahigh energy storage performance in BaTiO3-Bi(Mg1/2Ti1/2)O3 relaxor ferroelectric ceramics via nano-scale polarization mismatch and reconstruction. Nano Energy 67, 104264 (2020)

    Article  CAS  Google Scholar 

  5. M.S. Guney, Y. Tepe, Classification and assessment of energy storage systems. Renew. Sustain. Energy Rev. 75, 1187–1197 (2017)

    Article  Google Scholar 

  6. X. Wang, T. Yang, J. Shen, High-energy storage performance in (Pb0.98La0.02)(Zr0.45Sn0.55)0.995O3 AFE thick films fabricated via arolling process. J. Am. Ceram. Soc. 99, 3569–3672 (2016)

    Article  CAS  Google Scholar 

  7. H.B. Jung, J.H. Lim, M. Peddigari et al., Enhancement of energy storage and thermal stability of relaxor Pb0.92La0.08Zr0.52Ti0.48O3-Bi(Zn0.66Nb0.33)O3 thick films through aerosol deposition. J. Eur. Ceram. Soc. 40, 7063–7064 (2020)

    Article  Google Scholar 

  8. M.K. Bhattarai, K.K. Mishra, A.A. Instan et al., Enhanced energy storage density in Sc3+ substituted Pb(Zr0.53Ti0.47)O3 nanoscale films by pulse laser deposition technique. Appl. Surf. Sci. 490, 451–459 (2019)

    Article  CAS  Google Scholar 

  9. Z. Yang, B. Liu, Y. Hou et al., Structure and electrical properties of (1–x)Bi0.5Na0.5TiO3-xBi0.5K0.5TiO3 ceramics near morphotropic phase boundary. Mater. Res. Bull. 43, 81–89 (2008)

    Article  CAS  Google Scholar 

  10. R. Sumang, T. Bongkarn, N. Kumar et al., Investigation of a new lead-free (1-x-y)BNT-xBKT-yBZT piezoelectric ceramics. Ceram. Int. 43, S102–S109 (2017)

    Article  CAS  Google Scholar 

  11. H. Yang, F. Yan, Y. Lin et al., (2017) Lead-free BaTiO3-Bi0.5Na0.5TiO3-Na0.73Bi0.09NbO3 relaxor ferroelectric ceramics for high energy storage. J. Eur. Ceram. Soc. 37, 3303–3311 (2017)

    Article  CAS  Google Scholar 

  12. X. Ren, L. Jin, Z. Peng et al., Regulation of energy density and efficiency in transparent ceramics by grain refinement. Chem. Eng. J. 390, 124566 (2020)

    Article  CAS  Google Scholar 

  13. J. Zhang, X. Hao, Enhancing output performances and output retention rates of triboelectric nanogenerators via a design of composite inner-layers with coupling effect and self-assembled outer-layers with superhydrophobicity. Nano Energy 76, 105074 (2020)

    Article  CAS  Google Scholar 

  14. P. Fu, Z. Xu, R. Chu et al., Effects of Eu2O3 on the structure and electrical properties of 0.82Bi0.5Na0.5TiO3–0.18Bi0.5K0.5TiO3 lead-free piezoelectric ceramics. Curr. Appl. Phys. 11, 822–826 (2011)

    Article  Google Scholar 

  15. P. Fu, Z. Xu, H. Zhang et al., Structure and electrical properties of Er2O3 doped 0.82Bi0.5Na0.5TiO3–0.18Bi0.5K0.5TiO3 lead-free piezoelectric ceramics. Mater. Des. 40, 373–377 (2012)

    Article  CAS  Google Scholar 

  16. P. Fu, Z. Xu, R. Chu et al., Gd2O3 doped 0.82Bi0.5Na0.5TiO3–0.18Bi0.5K0.5TiO3 lead-free piezoelectric ceramics. Mater. Des. 35, 276–280 (2012)

    Article  CAS  Google Scholar 

  17. H. Xie, L. Yang, S. Pang et al., The evolution of phase structure, dielectric, strain, and energy storage density of complex-ions (Sr1/3Nb2/3)4+ doped 0.82Bi0.5Na0.5TiO3–0.18Bi0.5K0.5TiO3 ceramics. J. Phys. Chem. Solids 126, 287–293 (2019)

    Article  CAS  Google Scholar 

  18. Q. Li, J. Wang, Z. Liu et al., Enhanced energy-storage properties of BaZrO3-modified 0.80Bi0.5Na0.5TiO3–0.20Bi0.5K0.5TiO3 lead-free ferroelectric ceramics. J. Mater. Sci. 51, 1153–1160 (2016)

    Article  CAS  Google Scholar 

  19. Z. Yu, Y. Liu, M. Shen et al., Enhanced energy storage properties of BiAlO3 modified Bi0.5Na0.5TiO3-Bi0.5K0.5TiO3 lead-free antiferroelectric ceramics. Ceram. Int. 43, 7653–7659 (2017)

    Article  CAS  Google Scholar 

  20. R.E. Cohen, Origin of ferroelectricity in perovskite oxides. Nature 358, 136–138 (1992)

    Article  CAS  Google Scholar 

  21. J. Zhao, H. Du, S. Qu et al., The effects of Bi(Mg2/3Nb1/3)O3 on piezoelectric and ferroelectric properties of K0.5Na0.5NbO3 lead-free piezoelectric ceramics. J. Alloys Compd. 509, 3537–3540 (2011)

    Article  CAS  Google Scholar 

  22. G. Liu, Y. Li, M. Shi et al., An investigation of the dielectric energy storage performance of Bi(Mg2/3Nb1/3)O3-modifed BaTiO3 Pb-free bulk ceramics with improved temperature/frequency stability. Ceram. Int. 45, 19189–19196 (2019)

    Article  CAS  Google Scholar 

  23. Y. Qiu, Y. Lin, X. Liu et al., Bi(Mg2/3Nb1/3)O3 addition inducing high recoverable energy storage density in lead-free 0.65BaTiO3–0.35Bi0.5Na0.5TiO3 bulk ceramics. J. Alloys Compd. 797, 348–355 (2019)

    Article  CAS  Google Scholar 

  24. X. Qiao, D. Wu, F. Zhang et al., Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramic with large energy density and high efficiency under a moderate electric field. J. Mater. Chem. C 7, 10514 (2019)

    Article  CAS  Google Scholar 

  25. Q. Li, Z. Yao, L. Ning et al., Enhanced energy-storage performance and dielectric temperature stability of (1–x)(0.65Bi0.5Na0.5TiO3–0.35Bi0.1Sr0.85TiO3)-xKNbO3 ceramics. Ceram. Int. 44, 2782–2788 (2018)

    Article  CAS  Google Scholar 

  26. N. Zhao, H. Fan, L. Ning et al., Temperature-stable dielectric and energy storage properties of La(Ti0.5Mg0.5)O3-doped (Bi0.5Na0.5)TiO3-(Sr0.7Bi0.2)TiO3 lead-free ceramics. J. Am, Ceram. Soc. 101, 5578–5585 (2018)

    Article  CAS  Google Scholar 

  27. R. Muhammad, Y. Iqbal, I.M. Reaney et al., BaTiO3-Bi(Mg2/3Nb1/3)O3 ceramics for high-temperature capacitor applications. J. Am. Ceram. Soc. 99, 2089–2095 (2016)

    Article  CAS  Google Scholar 

  28. W. Liu, X. Ren, Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett. 103, 257602 (2009)

    Article  Google Scholar 

  29. D. Schütz, M. Deluca, W. Krauss et al., Lone-pair-induced covalency as the cause of temperature-and field-induced instabilities in bismuth sodium titanate. Adv. Funct. Mater. 22, 2285–2294 (2012)

    Article  Google Scholar 

  30. X. Qiao, D. Wu, F. Zhang et al., Enhanced energy density and thermal stability in relaxor ferroelectric Bi0.5Na0.5TiO3-Sr0.7Bi0.2TiO3 ceramics. J. Eur. Ceram. Soc. 39, 4778–4784 (2019)

    Article  CAS  Google Scholar 

  31. J. Wang, Y. Li, N. Sun et al., Bi(Mg0.5Ti0.5)O3 addition induced high recoverable energy-storage density and excellent electrical properties in lead-free Na0.5Bi0.5TiO3-based thick films. J. Eur. Ceram. Soc. 39, 255–263 (2019)

    Article  CAS  Google Scholar 

  32. J. Zang, W. Jo, H. Zhang et al., Bi1/2Na1/2TiO3-BaTiO3 based thick-film capacitors for high-temperature applications. J. Eur. Ceram. Soc. 34, 37–43 (2014)

    Article  CAS  Google Scholar 

  33. J. Zang, M. Li, D.C. Sinclair et al., Impedance spectroscopy of (Bi1/2Na1/2)TiO3-BaTiO3 ceramics modified with (K0.5Na0.5)NbO3. J. Am. Ceram. Soc. 97, 1523–1529 (2014)

    Article  CAS  Google Scholar 

  34. L. Jin, J. Pang, Y. Pu et al., Thermally stable electrostrains and composition-dependent electrostrictive coeffcient Q33 in lead-free ferroelectric ceramics. Ceram. Int. 45, 22854–22861 (2019)

    Article  CAS  Google Scholar 

  35. W. Jo, S. Schaab, E. Sapper et al., On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3-6 mol% BaTiO3. J. Appl. Phys. 110, 74106 (2011)

    Article  Google Scholar 

  36. E.L. Venturini, G.A. Samara, V.V. Laguta et al., Dipolar centers in incipient ferroelectrics: Mn and Fe in KTaO3. Phys. Rev. B 71, 094111 (2005)

    Article  Google Scholar 

  37. C.C. Homes, T. Vogt, S.M. Shapiro et al., Optical response of high-dielectric-constant perovskite-related oxide. Science 293, 673–676 (2001)

    Article  CAS  Google Scholar 

  38. L. Yang, X. Chao, P. Liang et al., Electrical properties and high-temperature dielectric relaxation behaviors of NaxBi(2–x)/3Cu3Ti4O12 ceramics. Mater. Res. Bull. 64, 216–222 (2015)

    Article  CAS  Google Scholar 

  39. Z. Peng, J. Li, P. Liang et al., Improved dielectric properties and grain boundary response of SrTiO3 doped Y2/3Cu3Ti4O12 ceramics fabricated by sol-gel process for high-energy-density storage applications. J. Eur. Ceram. Soc. 37, 4637–4644 (2017)

    Article  CAS  Google Scholar 

  40. P. Liang, Z. Yang, X. Chao, Improved dielectric properties and grain boundary response in neodymium-doped Y2/3Cu3Ti4O12 ceramics. J. Alloys Compd. 678, 273–283 (2016)

    Article  CAS  Google Scholar 

  41. H. Yang, F. Yan, Y. Lin et al., A lead free relaxation and high energy storage efficiency ceramics for energy storage applications. J. Alloys Compd. 710, 436–445 (2017)

    Article  CAS  Google Scholar 

  42. G. Liu, J. Dong, L. Zhang et al., Na0.25Sr0.5Bi0.25TiO3 relaxor ferroelectric ceramic with greatly enhanced electric storage property by a B-site ion doping. Ceram. Int. 46, 11680–11688 (2020)

    Article  CAS  Google Scholar 

  43. L. Jin, F. Li, S. Zhang, Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures. J. Am. Ceram. Soc. 97, 1–27 (2014)

    Article  CAS  Google Scholar 

  44. R. Jing, L. Jin, Y. Tian et al., Bi(Mg0.5Ti0.5)O3-doped NaNbO3 ferroelectric ceramics: linear regulation of Curie temperature and ultra-high thermally stable dielectric response. Ceram. Int. 45, 21175–21182 (2019)

    Article  CAS  Google Scholar 

  45. Z. Yang, H. Du, S. Qu et al., Significantly enhanced recoverable energy storage density in potassium-sodium niobate-based lead free ceramics. J. Mater. Chem. A 4, 13778–13785 (2016)

    Article  CAS  Google Scholar 

  46. M. Zhou, R. Liang, Z. Zhou et al., Novel BaTiO3-based lead-free ceramic capa-citors featuring high energy storage density, high power density, and excellentstability. J. Mater. Chem. C 6, 8528–8537 (2018)

    Article  CAS  Google Scholar 

  47. Z. Yang, H. Du, L. Jin et al., A new family of sodium niobate-based dielectrics for electrical energystorage applications. J. Eur. Ceram. Soc. 39, 2899–2907 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (Grant No. 51872177, 51577111, 51607108). The authors would also like to thank the Natural Science Basic Research Plan in the Shaanxi Province of China (Grant No. 2021ZDLSF06-03, 2021JM-201), Science and Technology Project of Xi,an, China (Grant No. 2020KJRC0014) and the Fundamental Research Funds for the Central Universities (Program No. GK202002014).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by ZP, JW, and MN. The first draft of the manuscript was written by ZP and JW, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Zhanhui Peng, Juanjuan Wang, Zupei Yang or Xiaolian Chao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Z., Wang, J., Niu, M. et al. Structure, electrical properties and energy storage performance of BNKT-BMN ceramics. J Mater Sci: Mater Electron 33, 3053–3064 (2022). https://doi.org/10.1007/s10854-021-07507-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07507-9

Navigation