Skip to main content

Advertisement

Log in

Oxygen vacancies-related high-temperature dielectric relaxation and pyroelectric energy harvesting in lead-free Ba(Zr0.2Ti0.8)O3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ba (Zr0.2Ti0.8) O3 ceramics were prepared by a sol–gel process. Temperature-dependent dielectric permittivity εγ and loss tanδ were investigated with different grain sizes. High-temperature dielectric relaxation behaviors were observed both in dielectric permittivity and loss spectra. Impedance spectroscopic data presented that both grain and grain boundary responses are responsible for the dielectric relaxation, which was closed with the migrations of oxygen vacancies. The effects of grain size on ferroelectric properties were further investigated. The sample sintered at 1450 °C exhibited excellent ferroelectric properties with a maximum saturated polarization of 8.7 µC/cm2 at the electric field of 40 kV/cm. Pyroelectric energy harvesting performance was investigated for the first time by using Olsen cycle for Ba(Zr0.2Ti0.8)O3 ceramic. The result shows that the sample sintered at 1450 °C obtained a maximum pyroelectric energy harvesting density of 110 kJ/m3 near room temperature, indicating that the ceramic was a promising candidate for the application of pyroelectric energy harvesting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. W. Gao, Y. Zhu, Y. Wang, G. Yuan, J.-M. Liu, J. Materiomics 6(1), 1 (2020). https://doi.org/10.1016/j.jmat.2019.11.001

    Article  Google Scholar 

  2. K.C. Kwon, Y. Zhang, L. Wang, W. Yu, X. Wang, I.-H. Park, H.S. Choi, T. Ma, Z. Zhu, B. Tian, ACS Nano 14(6), 7628 (2020). https://doi.org/10.1021/acsnano.0c03869

    Article  CAS  Google Scholar 

  3. Z. Pan, J. Ding, X. Hou, S. Shi, L. Yao, J. Liu, P. Li, J. Chen, J. Zhai, H. Pan, J. Mater. Chem. A 9(14), 9281 (2021). https://doi.org/10.1039/D0TA08335F

    Article  CAS  Google Scholar 

  4. W. Li, G. Tang, G. Zhang, H.M. Jafri, J. Zhou, D. Liu, Y. Liu, J. Wang, K. Jin, Y. Hu, Sci. Adv. 7(5), eabe3068 (2021) https://doi.org/10.1126/sciadv.abe3068

    Article  CAS  Google Scholar 

  5. J. Zhao, J. Gao, W. Li, Y. Qian, X. Shen, X. Wang, X. Shen, Z. Hu, C. Dong, Q. Huang, Nat. Commun. 12(1), 1 (2021). https://doi.org/10.1038/s41467-020-20833-6

    Article  CAS  Google Scholar 

  6. A.I. Khan, A. Keshavarzi, S. Datta, Nat. Electron. 3(10), 588 (2020). https://doi.org/10.1038/s41928-020-00492-7

    Article  Google Scholar 

  7. T. Teranishi, S. Kajiyama, H. Hayashi, A. Kishimoto, J. Am. Ceram. Soc. 100(4), 1542 (2017). https://doi.org/10.1111/jace.14768

    Article  CAS  Google Scholar 

  8. D.-J. Shin, J.-H. Ji, J. Kim, G.H. Jo, S.-J. Jeong, J.-H. Koh, J. Alloys Compd. 802, 562 (2019). https://doi.org/10.1016/j.jallcom.2019.05.363

    Article  CAS  Google Scholar 

  9. K.M. Sangwan, N. Ahlawat, S. Rani, S. Rani, R. Kundu, Ceram. Int. 44(9), 10315 (2018). https://doi.org/10.1016/j.ceramint.2018.03.039

    Article  CAS  Google Scholar 

  10. S. Kuang, X. Tang, L. Li, Y. Jiang, Q. Liu, Scr. Mater. 61(1), 68 (2009). https://doi.org/10.1016/j.scriptamat.2009.03.016

    Article  CAS  Google Scholar 

  11. K.Z. Rushchanskii, S. Blügel, M. Ležaić, Phys. Rev. Lett. 127(8), 087602 (2021). https://doi.org/10.1103/PhysRevLett.127.087602

    Article  CAS  Google Scholar 

  12. H. Tang, X.G. Tang, Y.P. Jiang, Q.X. Liu, W.H. Li, Acta Phys. Sin. 68(22), 227701 (2019). https://doi.org/10.7498/aps.68.20190562

    Article  CAS  Google Scholar 

  13. X. Shi, N. Kumar, M. Hoffman, J. Mater. Chem. C 8(11), 3887 (2020). https://doi.org/10.1039/C9TC05665C

    Article  CAS  Google Scholar 

  14. G.H. Jaffari, A.M. Iqbal, J. Appl. Phys. 128(1), 014104 (2020). https://doi.org/10.1063/5.0005611

    Article  CAS  Google Scholar 

  15. B. Kang, S.-K. Choi, C. Park, J. Appl. Phys. 94(3), 1904 (2003). https://doi.org/10.1063/1.1589595

    Article  CAS  Google Scholar 

  16. G.H. Haertling, J. Am, Ceram. Soc. 82(4), 797–818 (1999). https://doi.org/10.1111/j.1151-2916.1999.tb01840.x

    Article  CAS  Google Scholar 

  17. J. Scott, Science 315(5814), 954 (2007). https://doi.org/10.1126/science.1129564

    Article  CAS  Google Scholar 

  18. L. Feng, Y. Zhao, H. Zhao, Z. Shao, Sci. Rep. 4(1), 1 (2014). https://doi.org/10.1038/srep03868

    Article  CAS  Google Scholar 

  19. S.B. Riffat, X. Ma, Appl. Therm. Eng. 23(8), 913 (2003). https://doi.org/10.1016/S1359-4311(03)00012-7

    Article  Google Scholar 

  20. C.R. Bowen, J. Taylor, E. LeBoulbar, D. Zabek, A. Chauhan, R. Vaish, Energy Environ. Sci. 7(12), 3836 (2014). https://doi.org/10.1039/c4ee01759e

    Article  Google Scholar 

  21. F.Y. Lee, S. Goljahi, I.M. McKinley, C.S. Lynch, L. Pilon, Smart Mater. Struct. 21(2), 025021 (2012). https://doi.org/10.1088/0964-1726/21/2/025021

    Article  CAS  Google Scholar 

  22. R. Yimnirun, A. Ngamjarurojana, R. Wongmaneerung, S. Wongsaenmai, S. Ananta, Y. Laosiritaworn, Appl. Phys. A 89(3), 737 (2007). https://doi.org/10.1007/s00339-007-4156-9

    Article  CAS  Google Scholar 

  23. S. Choi, T.R. Shrout, S. Jang, A. Bhalla, Mater. Lett. 8(6-7), 253 (1989). https://doi.org/10.1016/0167-577X(89)90115-8

    Article  CAS  Google Scholar 

  24. A. Chauhan, S. Patel, G. Vats, R. Vaish, Energy Technol. 2(2), 205 (2014). https://doi.org/10.1002/ente.201300138

    Article  CAS  Google Scholar 

  25. S. Patel, A. Chauhan, S. Kundu, N.A. Madhar, B. Ilahi, R. Vaish, K. Varma, AIP Adv. 5(8), 087145 (2015). https://doi.org/10.1063/1.4929328

    Article  CAS  Google Scholar 

  26. S. Patel, A. Chauhan, A. Chauhan, R. Vaish, Mater. Res. Express 2(3), 035501 (2015). https://doi.org/10.1088/2053-1591/2/3/035501

    Article  CAS  Google Scholar 

  27. S. Kuang, X. Tang, T. Cheng, N. Ding, Q. Liu, Phys. Status Solidi A 206(4), 745 (2009). https://doi.org/10.1002/pssa.200824367

    Article  CAS  Google Scholar 

  28. W. Cai, C. Fu, J. Gao, X. Deng, J. Mater. Sci.: Mater. Electron. 21(4), 317 (2010). https://doi.org/10.1007/s10854-009-9913-4

    Article  CAS  Google Scholar 

  29. W. Cai, C. Fu, J. Gao, X. Deng, J. Mater. Sci.: Mater. Electron. 21(8), 796 (2010). https://doi.org/10.1007/s10854-009-9995-z

    Article  CAS  Google Scholar 

  30. C. Fu, F. Pan, W. Cai, X. Deng, X. Liu, J. Phys.: Conf. Ser. 152, 012075 (2009). https://doi.org/10.1088/1742-6596/152/1/012075

    Article  CAS  Google Scholar 

  31. T. Zhang, X. Tang, Q. Liu, Y. Jiang, X. Huang, Q. Zhou, J. Phys. D: Appl. Phys. 49(9), 095302 (2016). https://doi.org/10.1088/0022-3727/49/9/095302

    Article  CAS  Google Scholar 

  32. T.F. Zhang, X.G. Tang, X.X. Huang, Q.X. Liu, Y.P. Jiang, Q.F. Zhou, Energy Technol. 4(5), 633 (2016). https://doi.org/10.1002/ente.201500436

    Article  CAS  Google Scholar 

  33. Z. Li, H. Fan, J. Appl. Phys. 106(5), 054102 (2009). https://doi.org/10.1063/1.3211308

    Article  CAS  Google Scholar 

  34. K. Okazaki, K. Nagata, J. Am. Ceram. Soc. 56(2), 82 (1973). https://doi.org/10.1111/j.1151-2916.1973.tb12363.x

    Article  CAS  Google Scholar 

  35. X.G. Tang, H.L.W. Chan, J. Appl. Phys. 97(3), 034109 (2005). https://doi.org/10.1063/1.1849817

    Article  CAS  Google Scholar 

  36. K. Uchino, S. Nomura, Ferroeletrics 44(1), 55 (1982). https://doi.org/10.1080/00150198208260644

    Article  CAS  Google Scholar 

  37. Z. Yu, C. Ang, R. Guo, A. Bhalla, J. Appl. Phys. 92(5), 2655 (2002). https://doi.org/10.1063/1.1495069

    Article  CAS  Google Scholar 

  38. Y. Wu, Y. Pu, P. Zhang, J. Zhao, Y. Luo, Mater. Lett. 155, 134 (2015). https://doi.org/10.1016/j.matlet.2015.04.133

    Article  CAS  Google Scholar 

  39. C. Ang, Z. Jing, Z. Yu, J. Phys.: Condens. Matter. 14(38), 8901 (2002). https://doi.org/10.1088/0953-8984/14/38/313

    Article  CAS  Google Scholar 

  40. K. Hayashi, T. Yamamoto, Y. Ikuhara, T. Sakuma, J. Am. Ceram. Soc. 83(11), 2684 (2000). https://doi.org/10.1111/j.1151-2916.2000.tb01616.x

    Article  CAS  Google Scholar 

  41. C. Zhu, X. Wang, Q. Zhao, Z. Cai, Z. Cen, L. Li, J. Eur. Ceram. Soc. 39(4), 1142 (2019). https://doi.org/10.1016/j.jeurceramsoc.2018.11.034

    Article  CAS  Google Scholar 

  42. R. Waser, T. Baiatu, K.H. Härdtl, J. Am. Ceram. Soc. 73(6), 1645 (1990). https://doi.org/10.1111/j.1151-2916.1990.tb09809.x

    Article  CAS  Google Scholar 

  43. M. Li, H. Zhang, S.N. Cook, L. Li, J.A. Kilner, I.M. Reaney, D.C. Sinclair, Chem. Mater. 27(2), 629 (2015). https://doi.org/10.1021/cm504475k

    Article  CAS  Google Scholar 

  44. F. Yang, P. Wu, D.C. Sinclair, J. Mater. Chem. C 5(29), 7243 (2017). https://doi.org/10.1039/C7TC02519J

    Article  CAS  Google Scholar 

  45. X. Liu, S. Xue, F. Li, J. Ma, J. Zhai, B. Shen, F. Wang, X. Zhao, H. Yan, J. Mater. Chem. C 6(4), 814 (2018). https://doi.org/10.1039/C7TC05359B

    Article  CAS  Google Scholar 

  46. B. Singh, B. Kumar, Cryst. Res. Technol. 45(10), 1003 (2010). https://doi.org/10.1002/crat.201000287

    Article  CAS  Google Scholar 

  47. V.R. Mudinepalli, S. Song, J. Li, B. Murty, Ceram. Int. 40(1), 1781 (2014). https://doi.org/10.1016/j.ceramint.2013.07.078

    Article  CAS  Google Scholar 

  48. W. Cai, C. Fu, J. Gao, H. Chen, J. Alloys Compd. 480(2), 870 (2009). https://doi.org/10.1016/j.jallcom.2009.02.049

    Article  CAS  Google Scholar 

  49. Z. Song, H. Liu, S. Zhang, Z. Wang, Y. Shi, H. Hao, M. Cao, Z. Yao, Z. Yu, J. Eur. Ceram. Soc. 34(5), 1209 (2014). https://doi.org/10.1016/j.jeurceramsoc.2013.11.039

    Article  CAS  Google Scholar 

  50. G. Vats, A. Chauhan, R. Vaish, Int. J. Appl. Ceram. Technol. 12, E49 (2015). https://doi.org/10.1111/ijac.12214

    Article  CAS  Google Scholar 

  51. M.D. Li, X.G. Tang, S.M. Zeng, Q.X. Liu, Y.P. Jiang, T.F. Zhang, W.H. Li, J. Am. Ceram. Soc. 102(6), 3623 (2019). https://doi.org/10.1111/jace.16237

    Article  CAS  Google Scholar 

  52. G. Vats, A. Kumar, N. Ortega, C.R. Bowen, R.S. Katiyar, Energy Environ. Sci. 9(4), 1335 (2016). https://doi.org/10.1039/c5ee03641k

    Article  CAS  Google Scholar 

  53. F. Zhuo, Q. Li, J. Gao, Q. Yan, Y. Zhang, X. Xi, X. Chu, Phys. Chem. Chem. Phys. 19(21), 13534 (2017). https://doi.org/10.1039/C7CP01762F

    Article  CAS  Google Scholar 

  54. R.B. Olsen, D.A. Bruno, J.M. Briscoe, J. Appl. Phys. 58(12), 4709 (1985). https://doi.org/10.1063/1.336244

    Article  CAS  Google Scholar 

  55. S. Patel, A. Chauhan, R. Vaish, Mater. Res. Express 1(2), 025504 (2014). https://doi.org/10.1088/2053-1591/1/2/025504

    Article  CAS  Google Scholar 

  56. M. Ikura, Ferroelectrics 267(1), 403 (2002). https://doi.org/10.1080/713715909

    Article  CAS  Google Scholar 

  57. R.B. Olsen, D.A. Bruno, J.M. Briscoe, E.W. Jacobs, J. Appl. Phys. 57(11), 5036 (1985). https://doi.org/10.1063/1.335280

    Article  CAS  Google Scholar 

  58. R. Kandilian, A. Navid, L. Pilon, Smart Mater. Struct. 20(5), 055020 (2011). https://doi.org/10.1088/0964-1726/20/5/055020

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 11574057 and 12172093) and the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2021A1515012607).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Gui Tang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1225 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, PZ., Zhang, TF., Tang, ZX. et al. Oxygen vacancies-related high-temperature dielectric relaxation and pyroelectric energy harvesting in lead-free Ba(Zr0.2Ti0.8)O3 ceramics. J Mater Sci: Mater Electron 33, 3024–3033 (2022). https://doi.org/10.1007/s10854-021-07502-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07502-0

Navigation