Skip to main content
Log in

Design of hierarchical buffer structure for silicon/carbon composite as a high-performance Li-ion batteries anode

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Silicon-based materials are used as anode material for lithium-ion batteries, due to ultra-high theoretical specific capacity. However, large volume changes, continuous formation of unstable solid electrolyte interface film and low conductivity greatly restricted its large-scale development and application. In this case, a composite with hierarchical buffer structure coated Si nanoparticles (Si@RF@MP) was designed and manufactured by the surfactant template and emulsification method in this study. The resorcinol–formaldehyde resin acts as the structural buffer and the conductive layer to accommodate the volume change of silicon and provide fast channels for electron transfer and lithium-ion diffusion. The unique turbostratic structure of mesophase pitch can effectively improve the integral conductivity and the structural stability of the electrode. As a result, the Si@RF@MP composite exhibited an excellent reversible discharge capacity of 389 mA h g−1 after 200 cycles at 200 mA g−1, and retained a discharge capacity of 345 mA h g−1 after 300 cycles at a high current density of 1000 mA g−1. In addition, the Si@RF@MP composite delivered reversible capacities of about 546 mA h g−1, 495 mA h g−1, and 437 mA h g−1 in current densities of 500 mA g−1, 1000 mA g−1, and 2000 mA g−1, respectively, indicating good rate performance. Hence, this strategy provides a new method and idea for the further development of silicon/carbon composites and a strategy to achieve high value and green utilization of pitch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. X. Yang, X. Chen, J. Qiu, M. Li, H. Ming, S. Zhang, T. Zhang, Controllable synthesis of silicon/carbon hollow microspheres using renewable sources for high energy lithium-ion battery, J Solid State Chem. 296, 121968 (2021)

  2. G. Zhu, F. Zhang, X. Li, W. Luo, L. Li, H. Zhang, L. Wang, Y. Wang, W. Jiang, H.K. Liu, S.X. Dou, J. Yang, Engineering the distribution of carbon in silicon oxide nanospheres at the atomic level for highly stable anodes. Angew Chem Int Edit. 58, 6669–6673 (2019)

    Article  CAS  Google Scholar 

  3. T.-F. Yi, J. Mei, P.-P. Peng, S. Luo, Facile synthesis of polypyrrole-modified Li5Cr7Ti6O25 with improved rate performance as negative electrode material for Li-ion batteries. Compos Part B-Eng. 167, 566–572 (2019)

    Article  CAS  Google Scholar 

  4. T.F. Yi, J.P. Qu, X. Lai, X. Han, H. Chang, Y.R. Zhu, Toward high-performance Li storage anodes: design and construction of spherical carbon-coated CoNiO2 materials, Mater Today Chem. 19, 100407 (2021)

  5. J. Shi, X. Jiang, B. Ban, J. Li, J. Chen, Carbon nanotubees-enhanced lithium storage capacity of recovered silicon/carbon anodes produced from solar-grade silicon kerf scrap, Electrochim Acta. 381, 138269 (2021)

  6. M.R. Palacin, Recent advances in rechargeable battery materials: a chemist’s perspective. Chem Soc Rev. 38, 2565–2575 (2009)

    Article  CAS  Google Scholar 

  7. G. Liang, X. Qin, J. Zou, L. Luo, Y. Wang, M. Wu, H. Zhu, G. Chen, F. Kang, B. Li, Electrosprayed silicon-embedded porous carbon microspheres as lithium-ion battery anodes with exceptional rate capacities. Carbon 127, 424–431 (2018)

    Article  CAS  Google Scholar 

  8. B. Wang, J. Ryu, S. Choi, X. Zhang, D. Pribat, X. Li, L. Zhi, S. Park, R.S. Ruoff, Ultrafast-charging silicon-based coral-like network anodes for lithium-ion batteries with high energy and power densities. ACS Nano 13, 2307–2315 (2019)

    CAS  Google Scholar 

  9. Z. Yi, W. Wang, Y. Qian, X. Liu, N. Lin, Y. Qian, Mechanical pressing route for scalable preparation of microstructured/nanostrutured Si/graphite composite for lithium ion battery anodes. ACS Sustain Chem Eng. 6, 14230–14238 (2018)

    Article  CAS  Google Scholar 

  10. H. Mi, X. Yang, Y. Li, P. Zhang, L. Sun, A self-sacrifice template strategy to fabricate yolk-shell structured silicon@void@carbon composites for high-performance lithium-ion batteries. Chem Eng J. 351, 103–109 (2018)

    Article  CAS  Google Scholar 

  11. Y. Tian, Y. An, J. Feng, Flexible and freestanding silicon/MXene composite papers for high-performance lithium-ion batteries. ACS Appl Mater Inter. 11, 10004–10011 (2019)

    Article  CAS  Google Scholar 

  12. W. Wang, M. Tian, Y. Wei, S.-H. Lee, Y.-C. Lee, R. Yang, Binder-free three-dimensional silicon/carbon nanowire networks for high performance lithium-ion battery anodes. Nano Energy 2, 943–950 (2013)

    Article  CAS  Google Scholar 

  13. A.W. Nemaga, J. Mallet, J. Michel, C. Guery, M. Molinari, M. Morcrette, All electrochemical process for synthesis of Si coating on TiO2 nanotubes as durable negative electrode material for lithium ion batteries. J Power Sources. 393, 43–53 (2018)

    Article  CAS  Google Scholar 

  14. T.H. Hwang, Y.M. Lee, B.S. Kong, J.S. Seo, J.W. Choi, Electrospun core-shell fibers for robust silicon nanoparticle-based lithium ion battery anodes. Nano Lett. 12, 802–807 (2012)

    Article  CAS  Google Scholar 

  15. J.S. Kim, W. Pfleging, R. Kohler, H.J. Seifert, T.Y. Kim, D. Byun, H.-G. Jung, W. Choi, J.K. Lee, Three-dimensional silicon/carbon core–shell electrode as an anode material for lithium-ion batteries. J Power Sources. 279, 13–20 (2015)

    Article  CAS  Google Scholar 

  16. N. Liu, Z. Lu, J. Zhao, M.T. McDowell, H.W. Lee, W. Zhao, Y. Cui, A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat Nanotechnol. 9, 187–192 (2014)

    Article  CAS  Google Scholar 

  17. F. Di, N. Wang, L. Li, X. Geng, H. Yang, W. Zhou, C. Sun, B. An, Coral-like porous composite material of silicon and carbon synthesized by using diatomite as self-template and precursor with a good performance as anode of lithium-ions battery, J Alloy Compd. 854, 157253 (2021)

  18. T. Shao, J. Liu, L. Gan, Z. Gong, M. Long, Yolk-shell Si@void@C composite with Chito-oligosaccharide as a C–N precursor for high capacity anode in lithium-ion batteries, J Phys Chem Solids. 152, 109965 (2021)

  19. W. Liu, J. Wang, J. Wang, X. Guo, H. Yang, Three-dimensional nitrogen-doped carbon coated hierarchically porous silicon composite as lithium-ion battery anode, J Alloy Compd. 874, 159921 (2021)

  20. X. Dai, H. Liu, X. Liu, Z. Liu, Y. Liu, Y. Cao, J. Tao, Z. Shan, Silicon nanoparticles encapsulated in multifunctional crosslinked nano-silica/carbon hybrid matrix as a high-performance anode for Li-ion batteries, Chem Eng J. 418, 129468 (2021)

  21. G. Zhu, Y. Gu, S. Heng, Y. Wang, Q. Qu, H. Zheng, Simultaneous growth of SiOx/carbon bilayers on Si nanoparticles for improving cycling stability, Electrochim Acta. 323, 134840 (2019)

  22. J. Shi, X. Jiang, J. Sun, B. Ban, J. Li, J. Chen, A surface-engineering-assisted method to synthesize recycled silicon-based anodes with a uniform carbon shell-protective layer for lithium-ion batteries. J Colloid Interf Sci. 588, 737–748 (2021)

    Article  CAS  Google Scholar 

  23. H. Yang, S. Ji, J. Yin, W. Feng, W. Kong, Z. Wen, Petal-like metal-organic framework stabilized Si@C with long cycle life and excellent kinetics. J Colloid Interf Sci. 586, 381–390 (2021)

    Article  CAS  Google Scholar 

  24. Y. Lv, F. Lin, W. Liu, X. Lei, H. Qin, Z. Zhang, L. Wang, The effect of ethyl cellulose coating on the surface of silicon–carbon composite as lithium anode material. J Mater Sci-Mater El. 31, 11238–11246 (2020)

    Article  CAS  Google Scholar 

  25. Y. Xu, X. Sun, C. Wei, G. Liang, Y. Huang, R. Li, Q. He, A novel Si/Ag@PM@MIL-100 porous double-shell anode materials prepared by in-situ growth with MOF coatings. J Mater Sci-Mater El. 31, 1524–1534 (2019)

    Article  Google Scholar 

  26. M.G. Jeong, H.L. Du, M. Islam, J.K. Lee, Y.K. Sun, H.G. Jung, Self-rearrangement of silicon nanoparticles embedded in micro-carbon sphere framework for high-energy and long-life lithium-ion batteries. Nano Lett. 17, 5600–5606 (2017)

    Article  CAS  Google Scholar 

  27. P. Li, G. Zhao, X. Zheng, X. Xu, C. Yao, W. Sun, S.X. Dou, Recent progress on silicon-based anode materials for practical lithium-ion battery applications. Energy Storage Mater. 15, 422–446 (2018)

    Article  Google Scholar 

  28. Y. Lin, Y. Chen, Y. Zhang, J. Jiang, Y. He, Y. Lei, N. Du, D. Yang, Wet-chemical synthesized MCMB@Si@C microspheres for high-performance lithium-ion battery anodes. Chem Commun. 54, 9466–9469 (2018)

    Article  CAS  Google Scholar 

  29. X. Cheng, Q. Zha, X. Li, X. Yang, Modified characteristics of mesophase pitch prepared from coal tar pitch by adding waste polystyrene. Fuel Process Technol. 89, 1436–1441 (2008)

    Article  CAS  Google Scholar 

  30. Y. He, F. Han, F. Wang, J. Tao, H. Wu, F. Zhang, J. Liu, Optimal microstructural design of pitch-derived soft carbon shell in yolk-shell silicon/carbon composite for superior lithium storage, Electrochim Acta. 373, 137924 (2021)

  31. M. Wang, Y. Zhu, Y. Zhang, J. Duan, K. Wang, R. Wang, G. Sun, C. Wang, Isotropic high softening point petroleum pitch-based carbon as anode for high-performance potassium-ion batteries, J Power Sources. 481, 228902 (2021)

  32. P. Fan, T. Mu, S. Lou, X. Cheng, Y. Gao, C. Du, P. Zuo, Y. Ma, G. Yin, Amorphous carbon-encapsulated Si nanoparticles loading on MCMB with sandwich structure for lithium ion batteries. Electrochim Acta. 306, 590–598 (2019)

    Article  CAS  Google Scholar 

  33. W. Luo, Y. Wang, S. Chou, Y. Xu, W. Li, B. Kong, S.X. Dou, H.K. Liu, J. Yang, Critical thickness of phenolic resin-based carbon interfacial layer for improving long cycling stability of silicon nanoparticle anodes. Nano Energy 27, 255–264 (2016)

    Article  CAS  Google Scholar 

  34. N. Zhang, Y. Zhang, T. Wang, W. Ge, T. Zhang, L. Zhang, W. Zhang, Mild strategy for generating rich void space for nano-Si/C composites to accommodate the large volume expansion during alloying/dealloying for lithium-ion batteries, J Alloy Compd. 857, 157530 (2021)

  35. A.-H. Liang, T.-H. Xu, S. Liou, Y.-Y. Li, Silicon single walled carbon nanotube-embedded pitch-based carbon spheres prepared by a spray process with modified antisolvent precipitation for lithium ion batteries. Energ Fuel. 35, 9705–9713 (2021)

    Article  CAS  Google Scholar 

  36. S.R. Yousefi, A. Sobhani, M. Salavati-Niasari, A new nanocomposite superionic system (CdHgI4/HgI2): synthesis, characterization and experimental investigation. Adv Powder Technol. 28, 1258–1262 (2017)

    Article  CAS  Google Scholar 

  37. S.R. Yousefi, M. Masjedi-Arani, M.S. Morassaei, M. Salavati-Niasari, H. Moayedi, Hydrothermal synthesis of DyMn2O5/Ba3Mn2O8 nanocomposite as a potential hydrogen storage material. Int J Hydrogen Energ. 44, 24005–24016 (2019)

    Article  CAS  Google Scholar 

  38. Y.-C. Hsu, C.-C. Hsieh, W.-R. Liu, Synthesis of double core-shell carbon/silicon/graphite composite anode materials for lithium-ion batteries, Surf Coat Tech. 387, 125528 (2020)

  39. L. Su, J. Xie, Y. Xu, L. Wang, Y. Wang, M. Ren, Preparation and lithium storage performance of yolk-shell Si@void@C nanocomposites. Phys Chem Chem Phys. 17, 17562–17565 (2015)

    Article  CAS  Google Scholar 

  40. Q. Ma, Z. Zhao, Y. Zhao, H. Xie, P. Xing, D. Wang, H. Yin, A self-driven alloying/dealloying approach to nanostructuring micro-silicon for high-performance lithium-ion battery anodes. Energy Storage Mater. 34, 768–777 (2021)

    Article  Google Scholar 

  41. S. Abouali, M.A. Garakani, L. Silvestri, E. Venezia, L. Marasco, R. Brescia, A. Ansaldo, M. Serri, J.K. Panda, G. Pugliese, E. Mantero, F. Bonaccorso, V. Pellegrini, From scaled-up production of silicon-graphene nanocomposite to the realization of an ultra-stable full-cell Li-ion battery, 2D Mater. 8, 035014 (2021)

  42. I. Kang, J. Jang, M.-S. Kim, J.-W. Park, J.-H. Kim, Y.W. Cho, Nanostructured silicon/silicide/carbon composite anodes with controllable voids for Li-ion batteries. Mater Design. 120, 230–237 (2017)

    Article  CAS  Google Scholar 

  43. N. Liu, X. Mamat, R. Jiang, W. Tong, Y. Huang, D. Jia, Y. Li, L. Wang, T. Wågberg, G. Hu, Facile high-voltage sputtering synthesis of three-dimensional hierarchical porous nitrogen-doped carbon coated Si composite for high performance lithium-ion batteries. Chem Eng J. 343, 78–85 (2018)

    Article  CAS  Google Scholar 

  44. J. Liang, F. Huo, Z. Zhang, W. Yang, M. Javid, Y. Jung, X. Dong, G. Cao, Controlling the phenolic resin-based amorphous carbon content for enhancing cycling stability of Si nanosheets@C anodes for lithium-ion batteries. Appl Surf Sci. 476, 1000–1007 (2019)

    Article  CAS  Google Scholar 

  45. K.T. Lee, X. Ji, M. Rault, L.F. Nazar, Simple synthesis of graphitic ordered mesoporous carbon materials by a solid-state method using metal phthalocyanines. Angew Chem Int Edit. 48, 5661–5665 (2009)

    Article  CAS  Google Scholar 

  46. K. Tokumitsu, H. Fujimoto, A. Mabuchi, T. Kasuh, High capacity carbon anode for Li-ion battery - a theoretical explanation. Carbon 37, 1599–1605 (1999)

    Article  CAS  Google Scholar 

  47. X. He, X. Li, H. Ma, J. Han, H. Zhang, C. Yu, N. Xiao, J. Qiu, ZnO template strategy for the synthesis of 3D interconnected graphene nanocapsules from coal tar pitch as supercapacitor electrode materials. J Power Sources. 340, 183–191 (2017)

    Article  CAS  Google Scholar 

  48. X. Zhuang, Y. Zhang, L. He, Y. Zhu, Q. Tian, X. Guo, J. Chen, L. Li, Q. Wang, G. Song, X. Yan, Scalable synthesis of nano-Si embedded in porous C and its enhanced performance as anode of Li-ion batteries. Electrochim Acta. 249, 166–172 (2017)

    Article  CAS  Google Scholar 

  49. Z. Xiao, C. Yu, X. Lin, X. Chen, C. Zhang, F. Wei, Uniform coating of nano-carbon layer on SiOx in aggregated fluidized bed as high-performance anode material. Carbon 149, 462–470 (2019)

    Article  CAS  Google Scholar 

  50. J. Shi, H. Gao, G. Hu, Q. Zhang, Core-shell structured Si@C nanocomposite for high-performance Li-ion batteries with a highly viscous gel as precursor, J Power Sources. 438, 227001 (2019)

  51. Y. Tao, Y. Tian, Y. An, C. Wei, Y. Li, Q. Zhang, J. Feng, Green and facile fabrication of nanoporous silicon@carbon from commercial alloy with high graphitization degree for high-energy lithium-ion batteries, Sustain Mater Techno. 27, e00238 (2021)

  52. T.f. Yi, L. Shi, X. Han, F. Wang, Y. Zhu, Y. Xie, Approaching high-performance lithium storage materials by constructing hierarchical CoNiO2 @CeO2 nanosheets, Energy Environ Mater. 4, 586–595 (2020)

  53. B. Lee, T. Liu, S.K. Kim, H. Chang, K. Eom, L. Xie, S. Chen, H.D. Jang, S.W. Lee, Submicron silicon encapsulated with graphene and carbon as a scalable anode for lithium-ion batteries. Carbon 119, 438–445 (2017)

    Article  CAS  Google Scholar 

  54. C.-Y. Chen, A.-H. Liang, C.-L. Huang, T.-H. Hsu, Y.-Y. Li, The pitch-based silicon-carbon composites fabricated by electrospraying technique as the anode material of lithium ion battery, J Alloy Compd. 844, 156025 (2020)

  55. N. Liu, J. Liu, D. Jia, Y. Huang, J. Luo, X. Mamat, Y. Yu, Y. Dong, G. Hu, Multi-core yolk-shell like mesoporous double carbon-coated silicon nanoparticles as anode materials for lithium-ion batteries. Energy Storage Mater. 18, 165–173 (2019)

    Article  Google Scholar 

  56. J. Lv, J. Du, H. Jia, J. Ma, S. Zheng, Y. Nie, K. Song, L. Bai, Hierarchical carbon-coated Fe1-xS/mesocarbon microbeads composite as high-performance lithium-ion batteries anode. Ceram Int. 46, 9485–9491 (2020)

    Article  CAS  Google Scholar 

  57. H. Wang, J. Xie, S. Zhang, G. Cao, X. Zhao, Scalable preparation of silicon@graphite/carbon microspheres as high-performance lithium-ion battery anode materials. RSC Adv. 6, 69882–69888 (2016)

    Article  CAS  Google Scholar 

  58. C. Yu, X. Tian, Z. Xiong, Z. Zhang, Z. Sun, X. Piao, High stability of sub-micro-sized silicon/carbon composites using recycling silicon waste for lithium-ion battery anode, J Alloy Compd. 869, 159124 (2021)

  59. Z. Wang, B. Zheng, H. Liu, C. Zhang, F. Wu, H. Luo, P. Yu, One-step synthesis of nanoporous silicon @ graphitized carbon composite and its superior lithium storage properties, J Alloy Compd. 861, 157955 (2021)

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (Youth Science Foundation Program No. 21908206), Grant. YLU-DNL Fund of China (No. 2021015), Scientific and the Fundamental Research Funds for the Central Universities (DUT20ZD206).

Author information

Authors and Affiliations

Authors

Contributions

ZL: Investigation, Methodology, Writing—original draft. JD: Methodology, Writing—Review & Editing, Funding acquisition. HJ: Investigation, Resources. WW: Formal analysis, MZ: Validation. JM: Visualization. YN: Supervision, Writing—Review & Editing, Funding acquisition. TL: Supervision, Project administration. KS: Writing—Review & Editing, Supervision, Funding acquisition.

Corresponding authors

Correspondence to Juntao Du, Tianqing Liu or Kedong Song.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1953 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Du, J., Jia, H. et al. Design of hierarchical buffer structure for silicon/carbon composite as a high-performance Li-ion batteries anode. J Mater Sci: Mater Electron 33, 3002–3015 (2022). https://doi.org/10.1007/s10854-021-07500-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07500-2

Navigation