Skip to main content

Advertisement

Log in

Electric field-driven energy storage density and photo-catalytic temperament of Gd3+-BiFeO3 nano-ferrite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The multiferroic nanoferrites have widespread potential applications in the resolution of the ecological and green energy issues. In this work, we study the consequence of Gd3+ (x = 0.04 (G1), 0.08 (G2), & 0.12 (G3)) substitution on multiferroic properties, photo-catalysis, and energy storage density of Bi1-xGdxFeO3 (BGFO). These BGFO samples were characterized via XRD (X-ray Diffraction), FESEM (Field emission scanning electron microscopy), UV–Visible spectroscopy, Complex Impedance Analyzer, VSM (Vibrating Spin Magnetometer), light-driven catalysis for degradation of MB dye, and polarization (P–E) measurements. The average crystalline size was obtained in the range ~ 28–20 nm and the surface area was found in the range 7.14 (m2/g) to 13.35 (m2/g). The storage efficiency and energy storage density enhance from 32% to 43% and 2.054 to 3.428 mJ/cm3, respectively. A huge crest to crest strain (S+& S) are in the range 1.11–2.36% and 1.42–3.01%, respectively with the premier strain memory value (Sme %) 0.068 for G3. The remnant polarization (2Pr) and saturation magnetization (Ms) values were found to be augmented from 0.32 to 0.49 µC/Cm2 and 4.88 to 12.75 emu/gm, respectively, as the crystal customized via Gd3+ substitution. The efficiencies of photo-catalytic degradation were enlarged from 62.8% to 89.28% with the Gd3+ substitution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. C. Michel et al., The atomic structure of BiFeO3. Solid State Commun. 7(9), 701–704 (1969)

    Article  CAS  Google Scholar 

  2. H. Schmid, Multi-ferroic magnetoelectrics. Ferroelectrics 162(1), 317–338 (1994)

    Article  Google Scholar 

  3. M.M. Kumar et al., Ferroelectricity in a pure BiFeO3 ceramic. Appl. Phys. Lett. 76(19), 2764–2766 (2000)

    Article  CAS  Google Scholar 

  4. J. Li et al., Crystal structure, electronic structure, and magnetic properties of bismuth-strontium ferrites. J. Alloy. Compd. 315(1–2), 259–264 (2001)

    Article  CAS  Google Scholar 

  5. A.N. Spaldin, M. Fiebig, The renaissance of magnetoelectric multiferroics. Science 309(5733), 391–392 (2005)

    Article  CAS  Google Scholar 

  6. C. Ederer and N. A. Spaldin, Influence of strain and oxygen vacancies on the magnetoelectric properties of multiferroic bismuth ferrite, Physical Review B 71.22 (2005): 224103.

  7. M. Bibes, A. Barthélémy, Towards a magnetoelectric memory. Nat. Mater. 7(6), 425–426 (2008)

    Article  CAS  Google Scholar 

  8. H. Wu et al., Fabrication, characterization, properties, and applications of low-dimensional BiFeO3 nanostructures. J. Nanomater. 2014, 1–14 (2014)

    Google Scholar 

  9. S.Y. Yang et al., Photovoltaic effects in BiFeO3. Appl. Phys. Lett. 95, 062909 (2009)

    Article  Google Scholar 

  10. J.K. Kim et al., Sol–gel synthesis and properties of multiferroic BiFeO3. Mater. Lett. 59(29–30), 4006–4009 (2005)

    Article  CAS  Google Scholar 

  11. S. Zhang et al., Observation of room temperature saturated ferroelectric polarization in Dy substituted BiFeO3 ceramics. J. Appl. Phys. 111, 07410 (2012)

    Google Scholar 

  12. D. Varshney et al., Effect of A site and B site doping on structural, thermal, and dielectric properties of BiFeO3 ceramics. J. Alloy. Compd. 509(33), 8421–8426 (2011)

    Article  CAS  Google Scholar 

  13. C. Quan et al., Comparative studies of pure, Ca-doped, Co-doped and co-doped BiFeO3 nanoparticles. Ceram. Int. 42(1), 537–544 (2016)

    Article  CAS  Google Scholar 

  14. R. Dahiya et al., Structural, magnetic and dielectric properties of Sr and V doped BiFeO3 multiferroics. J. Magn. Magn. Mater. 385, 175–181 (2015)

    Article  CAS  Google Scholar 

  15. X. Zheng et al., The magnetic properties of La doped and codoped BiFeO3. J. Alloy. Compd. 499(1), 108–112 (2010)

    Article  CAS  Google Scholar 

  16. X. Zhang et al., Effect of Eu substitution on the crystal structure and multiferroic properties of BiFeO3. J. Alloy. Compd. 507(1), 157–161 (2010)

    Article  CAS  Google Scholar 

  17. T. Soltani, B. Lee, Novel and facile synthesis of Ba-doped BiFeO3 nanoparticles and enhancement of their magnetic and photocatalytic activities for complete degradation of benzene in aqueous solution. J. Hazard. Mater. 316, 122–133 (2016)

    Article  CAS  Google Scholar 

  18. S. Irfan et al., Band-gap engineering and enhanced photocatalytic activity of Sm and Mn doped BiFeO3 nanoparticles. J. Am. Ceram. Soc. 100(1), 31–40 (2017)

    Article  CAS  Google Scholar 

  19. L.G. Betancourt-Cantera et al., Structural transitions and multiferroic properties of high Ni-doped BiFeO3. J. Magn. Magn. Mater. 456, 381–389 (2018)

    Article  CAS  Google Scholar 

  20. K.Y. Yun et al., Structural and multiferroic properties of BiFeO3 thin films at room temperature. J. Appl. Phys. 96(6), 3399–3403 (2004)

    Article  CAS  Google Scholar 

  21. A. Mukherjee et al., Enhancement of multiferroic properties of nanocrystalline BiFeO3 powder by Gd-doping. J. Alloy. Compd. 598, 142–150 (2014)

    Article  CAS  Google Scholar 

  22. S. Zinatloo-Ajabshir, M. Salavati-Niasari, Photo-catalytic degradation of erythrosine and eriochrome black T dyes using Nd2Zr2O7 nanostructures prepared by a modified Pechini approach. Sep. Purif. Technol. 179, 77–85 (2017)

    Article  CAS  Google Scholar 

  23. S. Zinatloo-Ajabshir, M. Mousavi-Kamazani, Effect of copper on improving the electrochemical storage of hydrogen in CeO2 nanostructure fabricated by a simple and surfactant-free sonochemical pathway. Ceram. Int. 46(17), 26548–26556 (2020)

    Article  CAS  Google Scholar 

  24. F. Razi et al., Preparation and characterization of HgI2 nanostructures via a new facile route. Mater. Lett. 193, 9–12 (2017)

    Article  CAS  Google Scholar 

  25. F. Beshkar, Farshad, et al., Preparation and characterization of the CuCr2O4 nanostructures via a new simple route. J. Mater. Sci. Mater. Electronics 26, 5043–5051 (2015)

    Article  CAS  Google Scholar 

  26. S. Zinatloo-Ajabshir et al., Preparation, characterization and photocatalytic degradation of methyl violet pollutant of holmium oxide nanostructures prepared through a facile precipitation method. J. Mol. Liq. 231, 306–313 (2017)

    Article  CAS  Google Scholar 

  27. S. Zinatloo-Ajabshir et al., Nd2Sn2O7 nanostructures: green synthesis and characterization using date palm extract, a potential electrochemical hydrogen storage material. Ceram. Int. 46(11), 17186–17196 (2020)

    Article  CAS  Google Scholar 

  28. S. Zinatloo-Ajabshir et al., Green synthesis of dysprosium stannate nanoparticles using Ficus carica extract as photocatalyst for the degradation of organic pollutants under visible irradiation. Ceram. Int. 46(5), 6095–6107 (2020)

    Article  CAS  Google Scholar 

  29. S. Zinatloo-Ajabshir, M. Salavati-Niasari, Preparation of magnetically retrievable CoFe2O4@SiO2@Dy2Ce2O7 nanocomposites as novel photocatalyst for highly efficient degradation of organic contaminants. Composite Part B: Eng. 174, 106930 (2019)

    Article  CAS  Google Scholar 

  30. S.M. Morassaei et al., Simple salt-assisted combustion synthesis of Nd2Sn2O7–SnO2 nanocomposites with different amino acids as fuel: an efficient photocatalyst for the degradation of methyl orange dye. J. Mater. Sci.: Mater. Electron. 27(11), 11698–11706 (2016)

    CAS  Google Scholar 

  31. S. Selvaraj et al., Synthesis and photocatalytic activity of Gd doped ZnO nanoparticles for enhanced degradation of methylene blue under visible light. Mater. Sci. Semiconductor Processing 103, 104622 (2019)

    Article  CAS  Google Scholar 

  32. A. Popa et al., Fe3O4-TiO2: Gd nanoparticles with enhanced photocatalytic activity and magnetic recyclability. Powder Technol. 325, 441–451 (2018)

    Article  CAS  Google Scholar 

  33. P. Kumar et al., La3+ substituted BiFeO3-a proficient nano ferrite photo-catalyst under the application of visible light. Chem. Phys. Lett. 754, 13771 (2020)

    Article  Google Scholar 

  34. S.H.I. Huixian et al., Preparation and photocatalytic activity of La3+ and Eu3+ co-doped TiO2 nanoparticles: photo-assisted degradation of methylene blue. J. Rare Earths 29(8), 746–752 (2011)

    Article  Google Scholar 

  35. A. Azam et al., J. Appl. Phys. 108, 094329 (2010)

    Article  Google Scholar 

  36. R. Rani et al., Investigation of dielectric and electrical properties of Mn doped sodium potassium niobate ceramic system using impedance spectroscopy. J. Appl Phys. 110, 104102 (2011)

    Article  Google Scholar 

  37. W. Mao et al., Effect of Ln (Ln= La, Pr) and Co co-doped on the magnetic and ferroelectric properties of BiFeO3 nanoparticles. J. Alloy. Compd. 584, 520–523 (2014)

    Article  CAS  Google Scholar 

  38. D.H. Kim et al., Interface electronic structures of BaTiO3@ X nanoparticles (X= γ-Fe2O3, Fe3O4, α-Fe2O3, and Fe) investigated by XAS and XMCD. Phys. Rev. B 79, 033402 (2009)

    Article  Google Scholar 

  39. S. Basu et al., Studies on the piezoelectric and magnetostrictive phase distribution in lead zirconate titanate–cobalt iron oxide composites. Mater. Chem. Phys. 132(2–3), 570–580 (2012)

    Article  CAS  Google Scholar 

  40. V.S. Puli et al., Investigations on structure, ferroelectric, piezoelectric and energy storage properties of barium calcium titanate (BCT) ceramics. J. Alloy. Compd. 584, 369–373 (2014)

    Article  CAS  Google Scholar 

  41. S. Shankar et al., Energy storage and magnetoelectric coupling in ferroelectric–ferrite composites. J. Mater. Sci.: Mater. Electron. 29(21), 18352–18357 (2018)

    CAS  Google Scholar 

  42. T. Rojac et al., Large electric-field induced strain in BiFeO3 ceramics. J. Am. Ceram. Soc. 94(12), 4108–4111 (2011)

    Article  CAS  Google Scholar 

  43. P. Kumar, P. Chand, Structural, electric transport response and electro-strain-Polarization effect in La and Ni modified bismuth ferrite nanostructures. J. Alloy. Compd. 748, 504–514 (2018)

    Article  CAS  Google Scholar 

  44. J. Walker et al., Temperature dependent piezoelectric response and strain–electric-field hysteresis of rare-earth modified bismuth ferrite ceramics. J. Mater. Chem. C 4(33), 7859–7868 (2016)

    Article  CAS  Google Scholar 

  45. G.S. Arya et al., Effect of In and Mn co-doping on structural, magnetic and dielectric properties of BiFeO3 nanoparticles. J. Phys. D: Appl. Phys. 46, 095004 (2013)

    Article  CAS  Google Scholar 

  46. B. Bhushan et al., Effect of alkaline earth metal doping on thermal, optical, magnetic and dielectric properties of BiFeO3 nanoparticles. J. Phys. D: Appl. Phys. 42, 065004 (2009)

    Article  Google Scholar 

  47. D.P. Dutta et al., Improved magnetic and ferroelectric properties of Sc and Ti codoped multiferroic nano BiFeO3 prepared via sono-chemical synthesis. Dalton Trans. 43(21), 7838–7846 (2014)

    Article  CAS  Google Scholar 

  48. Y. Huo et al., Citric acid assisted solvothermal synthesis of BiFeO3 microspheres with high visible-light photocatalytic activity. J. Mol. Catal. A: Chem. 331(1–2), 15–20 (2010)

    Article  CAS  Google Scholar 

  49. H. Fan et al., ZnO–graphene composite for photocatalytic degradation of methylene blue dye. Catal. Commun. 29, 29–34 (2012)

    Article  CAS  Google Scholar 

  50. S. Lee et al., TiO2 photocatalyst for water treatment applications. J. Indus. Eng. Chem. 19, 1761–1769 (2013)

    Article  CAS  Google Scholar 

  51. S.Z. Ajabshir et al., Nd2O3 nanostructures: Simple synthesis, characterization and its photocatalytic degradation of methylene blue. J. Mol. Liq. 234, 430–436 (2017)

    Article  Google Scholar 

  52. S.Z. Ajabshir et al., Facile size-controlled preparation of highly photocatalytically active praseodymium zirconate nanostructures for degradation and removal of organic pollutants. Sep. Purif. Technol. 177, 110–120 (2017)

    Article  Google Scholar 

  53. S.Z. Ajabshir et al., Facile preparation of Nd2Zr2O7–ZrO2 nanocomposites as an effective photocatalyst via a new route. J. Energy Chem. 26(2), 315–323 (2017)

    Article  Google Scholar 

  54. M. Khaksar et al., Mn-doped ZrO2 nanoparticles as an efficient catalyst for green oxidative degradation of methylene blue. Catal. Commun. 72, 1–5 (2015)

    Article  CAS  Google Scholar 

  55. X. Bai et al., Size effect on optical and photocatalytic properties in BiFeO3 nanoparticles. J. Phys. Chem. C 120(7), 3595–3601 (2016)

    Article  CAS  Google Scholar 

  56. J. Lv et al., Large strain and strain memory effect in bismuth ferrite lead-free ceramics. J. Mater. Chem. C 5, 9528–9533 (2017)

    Article  CAS  Google Scholar 

  57. S. Li et al., BiFeO3/TiO2 core-shell structured nanocomposites as visible-active photocatalysts and their optical response mechanism. J. Appl. Phys. 105, 054310 (2009)

    Article  Google Scholar 

  58. Md. Elias et al., Microwave-assisted synthesis of Ce-doped ZnO/CNT composite with enhanced photo-catalytic activity. Ceram. Int. 43, 84–91 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the technical assistance with FESEM characterization offered by the Department of Material Science and Engineering at NIT Hamirpur. The authors also thank the Director of NIT Kurukshetra for providing the research facilities in the Physics Department.

Author information

Authors and Affiliations

Authors

Contributions

Prakash Chand contributed to conceptualization, writing and preparation of the original draft, writing, reviewing, and editing of the manuscript, validation, resources, and supervision; Praveen Kumar contributed to methodology, software, data plotting, and writing and preparation of the original draft.

Corresponding author

Correspondence to Prakash Chand.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Chand, P. Electric field-driven energy storage density and photo-catalytic temperament of Gd3+-BiFeO3 nano-ferrite. J Mater Sci: Mater Electron 33, 2980–2994 (2022). https://doi.org/10.1007/s10854-021-07498-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07498-7

Navigation