Skip to main content
Log in

Structural and optical properties of NaY(WO4)2:Tm3+,Yb3+ and NaY(WO4)2:Tm3+,Er3+,Yb3+ powders synthesized by the high-temperature solid-state method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The NaY(WO4)2:Tm3+,Yb3+ (NYW:Tm3+,Yb3+) and NaY(WO4)2:Tm3+,Er3+,Yb3+ (NYW:Tm3+,Er3+,Yb3+) powders have been synthesized by the high-temperature solid-state method. The structural and optical properties of the samples are characterized by X-ray diffraction (XRD), Raman, and fluorescence spectroscopy measurements. XRD analysis indicates that the phase structure of the matrix is not changed after rare-earth ion doping and high purity of NYW-phase can be obtained at the 800 °C. Raman spectrum shows that the existence of WOW mono oxygen bridges and WOOW dioxygen bridges in the crystal lattice. Under the pump excitation of 980 nm laser, the blue and red emission of NYW:Tm3+,Yb3+ powder and the green and red emission of NYW:Tm3+,Er3+,Yb3+ powder have been observed. The luminous intensity of NYW:Tm3+,Er3+,Yb3+ powder is higher than the NYW:Tm3+,Yb3+ powder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. G. Yi, H. Lu, S. Zhao, Y. Ge, W. Yang, D. Chen, L.H. Guo, Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4:Yb,Er infrared-to-visible up-conversion phosphors. J. Nano Lett. 4, 2191–2196 (2004). https://doi.org/10.1021/nl048680h

    Article  CAS  Google Scholar 

  2. P.V. dos Santos, M.V.D. Vermelho, E.A. Gouveia, M.T. de Araújo, A.S. Gouveia-Neto, Blue cooperative luminescence in Yb3+-doped tellurite glasses excited at 1.064 μm. J. Chem. Phys. 116, 6772–6776 (2002). https://doi.org/10.1063/1.1463397

    Article  CAS  Google Scholar 

  3. C. Zhang, Q. Jiang, X. Wang, J. Liu, Y. Xiao, C. Li, H. Lin, F. Zeng, Z. Su, A novel scheme to acquire enhanced up-conversion emissions of Ho3+ and Yb3+ co-doped Sc2O3. Curr. Appl. Phys. 20, 82–88 (2020). https://doi.org/10.1016/j.cap.2019.10.002

    Article  CAS  Google Scholar 

  4. J.X. Zhang, W.L. Chan, C. Xie, Y. Zhou, H.F. Chau, P. Maity, G.T. Harrison, A. Amassian, O.F. Mohammed, P.A. Tanner, Impressive near-infrared brightness and singlet oxygen generation from strategic lanthanide–porphyrin double-decker complexes in aqueous solution. Light Sci. Appl. 8, 46 (2019). https://doi.org/10.1038/s41377-019-0155-9

    Article  CAS  Google Scholar 

  5. C. Li, J. Xu, W. Liu, H. Lin, Y. Liu, D. Wang, J. Zhai, T. Fu, H. Zhou, Y. Li, J. Liu, F. Zeng, Synthesis and characterization of Er:Yb3Al5O12 nanopowder. Russ. J. Phys. Chem. 89, 2263–2266 (2015). https://doi.org/10.1134/s0036024415120092

    Article  CAS  Google Scholar 

  6. R. Lisieckia, M. Glowacki, M. Berkowski, W.R. Romanowski, Contribution of energy transfer processes to excitation and relaxation of Yb3+ ions in Gd3(Al, Ga)5O12:RE3+, Yb3+ (RE3+ = Tm3+, Er3+, Ho3+, Pr3+). J. Lumin. 211, 54–61 (2019). https://doi.org/10.1016/j.jlumin.2019.03.019

    Article  CAS  Google Scholar 

  7. D. Vennerberg, Z. Lin, Upconversion nanocrystals: synthesis, properties, assembly and applications. J. Sci. Adv. Mater. 3, 26–40 (2011). https://doi.org/10.1166/sam.2011.1137

    Article  Google Scholar 

  8. J. Li, T. Li, H. Suo, X. Zhao, C. Guo, Up-conversion emission color tuning in NaLa(MoO4)2:Nd3+/Yb3+/Ho3+ excited at 808 nm. J. Ceram. Int. 43, 6333–6339 (2017). https://doi.org/10.1016/j.ceramint.2017.02.041

    Article  CAS  Google Scholar 

  9. G. Jiang, S. Zhou, X. Wei, Y. Chen, C. Duan, M. Yin, B. Yang, W. Cao, 794 nm excited core-shell upconversion nanoparticles for optical temperature sensing. J. RSC Adv. 6, 11795–11801 (2016). https://doi.org/10.1039/C5RA27203C

    Article  CAS  Google Scholar 

  10. D. Wang, H. Fan, Z. Chen, X. Wan, S. Tie, S. Lan, Upconversion luminescence of Eu3+ ion in aluminoborate/NaYF4 vitreous composite matrix induced by 800 nm laser. J. Alloy Compd. 657, 115–121 (2016). https://doi.org/10.1016/j.jallcom.2015.10.072

    Article  CAS  Google Scholar 

  11. X.J. Xue, W. Qin, D.S. Zhang, D. Zhao, G.D. Wei, K.Z. Zheng, L.L. Wang, G.F. Wang, Synthesis and upconversion luminescence of NaYF4:Yb3+,Tm3+/TiO2 nanocrystal colloidal solution. J. Nanosci. Nanotechnol. 10, 2028–2031 (2010). https://doi.org/10.1166/jnn.2010.2133

    Article  CAS  Google Scholar 

  12. W. Zheng, P. Huang, D. Tu, E. Ma, H. Zhu, X. Chen, Lanthanide-doped upconversion nano-bioprobes: electronic structures, optical properties, and biodetection. J. Chem. Soc. Rev. 44, 1379–1415 (2015). https://doi.org/10.1039/c4cs00178h

    Article  CAS  Google Scholar 

  13. D. Wang, B. Xue, X. Kong, L. Tu, X. Liu, Y. Zhang, Y. Chang, Y. Luo, H. Zhao, H. Zhang, 808 nm driven Nd3+-sensitized upconversion nanostructures for photodynamic therapy and simultaneous fluorescence imaging. J. Nanoscale. 7, 190–197 (2015). https://doi.org/10.1039/c4nr04953e

    Article  CAS  Google Scholar 

  14. D. Yu, T. Yu, A.J. van Bunningen, Q. Zhang, A. Meijerink, F.T. Rabouw, Understanding and tuning blue-to-near-infrared photon cutting by the Tm3+/Yb3+ couple. Light Sci Appl. 107, 1–9 (2020). https://doi.org/10.1038/s41377-020-00346-z

    Article  CAS  Google Scholar 

  15. J.F. Suyver, J. Grimm, M.K. van Veen, D. Biner, K.W. Kramer, H.U. Gudel, Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+. J. Lumin. 117, 1–12 (2006). https://doi.org/10.1016/j.jlumin.2005.03.011

    Article  CAS  Google Scholar 

  16. Z. Xia, Y. Zhang, M.S. Molokeev, V.V. Atuchin, Y. Luo, Linear structural evolution induced tunable photoluminescence in clinopyroxene solid-solution phosphors. Sci. Rep. 3310, 1–7 (2013). https://doi.org/10.1038/srep03310

    Article  Google Scholar 

  17. W. Lee, J.W. Han, Y. Chen, Z. Cai, B. Yildiz, Cation size mismatch and charge interactions drive dopant segregation at the surfaces of manganite perovskites. J. Am. Chem. Soc. 135, 7909–7925 (2013). https://doi.org/10.1021/ja3125349

    Article  CAS  Google Scholar 

  18. X.Y. Chen, H.Z. Zhuang, G.K. Liu, Confinement on energy transfer between luminescent centers in nanocrystals. J. Appl. Phys. 94, 5559–5565 (2003). https://doi.org/10.1063/1.1614865

    Article  CAS  Google Scholar 

  19. T. Xiong, Study on the photoluminescence control and temperature sensing characteristics of rare earth ions (Yanshan University, China, 2020)

    Google Scholar 

  20. H.Y. Sha, Z. He, C. Li, X. Wang, Q. Jiang, F. Zeng, Z. Su, Lanthanide-doped Sc2O3 for highly sensitive temperature sensor. Opt. Mater. 93, 39–43 (2019). https://doi.org/10.1016/j.optmat.2019.04.067

    Article  CAS  Google Scholar 

  21. S. Xiang, H. Zheng, Y. Zhang, T. Peng, X. Zhang, B. Chen, Effect of Tm3+ concentration and temperature on blue and NIR upconversion luminescence in Tm3+/Yb3+ co-doped NaY(WO4)2 microstructures. J. Nanosci. Nanotechnol. 16, 636–642 (2016). https://doi.org/10.1166/jnn.2016.10890

    Article  CAS  Google Scholar 

  22. V.P. Gapontsev, S.M. Matitsin, A.A. Isineev, V.B. Kravcheko, Erbium glass lasers and their applications. Opt. Laser Technol. 14, 189–196 (1982). https://doi.org/10.1016/0030-3992(82)90095-0

    Article  CAS  Google Scholar 

  23. C.S. Lim, Microwave-modified sol-gel process of NaY(WO4) 2:Ho3+/Yb3+ phosphors and the upconversion of their photoluminescence properties. J. Korean Ceram. Soc. 41, 2616–2621 (2015). https://doi.org/10.1016/j.ceramint.2014.10.042

    Article  CAS  Google Scholar 

  24. Y. Yang, F. Hao, X. Zhang, Microwave heating synthesis and luminescence of NaY(WO4)2:(Ho3+, Yb3+) phosphors. J. Mater. 26, 229–233 (2014). https://doi.org/10.1007/s10854-014-2388-y

    Article  CAS  Google Scholar 

  25. T. Liu, Q. Meng, W. Sun, Luminescence properties of NaY(WO4)2:Sm3+, Eu3+ phosphors prepared by molten salt method. J. Lumin. 170, 219–225 (2016). https://doi.org/10.1016/j.jlumin.2015.10.011

    Article  CAS  Google Scholar 

  26. S. Xu, S. Xiang, Y. Zhang, J. Zhang, X. Li, J. Sun, L. Cheng, B. Chen, 808 nm laser induced photothermal effect on Sm3+/Nd3+ doped NaY(WO4)2 microstructures. Sens. Actuators B. 240, 386–391 (2017). https://doi.org/10.1016/j.snb.2016.08.176

    Article  CAS  Google Scholar 

  27. Z.X. Shi, J. Wang, X. Guan, Preparation and upconversion luminescence properties of Nd3+/Yb3+/Tm3+ co-doped NaY(WO4)2 nanocrystals. J. Chin. Ceram. Soc. 46(1), 136–141 (2018). https://doi.org/10.14062/j.issn.0454-5648.2018.01.18

    Article  CAS  Google Scholar 

  28. Y. Li, Y. Li, C. Li, X. Zhang, F. Zeng, H. Lin, Z. Su, C.K. Mahadevan, Structural, mechanical, thermal and optical properties of NaCl:Ce3+ single crystals grown in large size by the Czochralski method. J. Alloys Compd. 849, 156592 (2020). https://doi.org/10.1016/j.jallcom.2020.156592

    Article  CAS  Google Scholar 

  29. C. Zhang, X. Wang, C. Li, H. Lin, Z. Su, Effect of Li ions on structure and spectroscopic properties of NaY(WO4)2: Yb/Ho phosphor. J. Ceram. Int. 46, 24248–24256 (2020). https://doi.org/10.1016/j.ceramint.2020.06.205

    Article  CAS  Google Scholar 

  30. L. Han, Research on non-radiation mechanism in rare earth doped laser crystals and its influence on ion luminescence properties (Nankai University, China, 2003)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the program of Department of Science and Technology of Jilin Province, China (20200403158SF, 20200801038GH). Education Department of Jilin Provincial (JJKH20200272KJ, JJKH20202711KJ).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuejian Zhang, Yongtao Li or C. K. Mahadevan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Sun, X., Li, Y. et al. Structural and optical properties of NaY(WO4)2:Tm3+,Yb3+ and NaY(WO4)2:Tm3+,Er3+,Yb3+ powders synthesized by the high-temperature solid-state method. J Mater Sci: Mater Electron 33, 2949–2956 (2022). https://doi.org/10.1007/s10854-021-07493-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07493-y

Navigation