Skip to main content
Log in

WO3 films prepared by anodic oxidation in acid electrolytes and their photocatalytic activity of organic dye degradation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We prepared two kinds of WO3 films with different surface morphologies by anodic oxidation in two types of electrolytes. In the electrolyte of NaF + HF aqueous solution, WO3 nanotube array films were prepared. Meanwhile, films consist of flower-like WO3 nanoplates formed in the electrolyte of NaF + H2SO4. The former films had a longer lifetime of charge carriers, more negative VBM and CBM positions, and a lower charge transfer resistance than the latter. On the contrary, the latter possessed a smaller band gap, a greater photocurrent density, and more active radicals, including OH and\(\cdot {\rm O}_{2}^{ - }\). The comprehensive effect of the above factors resulted in the very similar photocatalytic activity of the two kinds of WO3 films in MB degradation under visible-light irradiation. The results of radical trapping experiments indicate that hydroxyl radicals played a crucial role in the photocatalytic degradation of MB dye. In addition, superoxide radicals, as an intermediate medium of hydroxyl radicals, also acted as an essential part. The hydroxyl radicals were generated by the single-electron or multi-electron transfer of O2 rather than the reaction between photogenerated holes and OH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Z. Huang, J. Song, L. Pan, X. Zhang, L. Wang, J. Zou, Adv. Mater. 27, 5309 (2015)

    Article  CAS  Google Scholar 

  2. C. Loka, K.S. Lee, Mater. Res. Bull. 137, 111192 (2021)

    Article  CAS  Google Scholar 

  3. L. Kong, X. Guo, J. Xu, Z. Mo, L. Li, J. Photochem. Photobiol. A 401, 112760 (2020)

    Article  CAS  Google Scholar 

  4. S. Hossain, W.S. Chu, C.S. Lee, S.H. Ahn, D.M. Chun, Mater. Chem. Phys. 226, 141–150 (2019)

    Article  CAS  Google Scholar 

  5. A. Arfaoui, S. Touihri, A. Mhamdi, A. Labidi, T. Manoubi, Appl. Surf. Sci. 357A, 1089–1096 (2015)

    Article  Google Scholar 

  6. R.Q. Cabrera, E.R. Latimer, A. Kafizas, C.S. Blackman, C.J. Carmalt, I.P. Parkin, J. Photochem. Photobiol. A 239, 60–64 (2012)

    Article  CAS  Google Scholar 

  7. R.A. Carcel, L. Andronic, A. Duta, Mater. Charact. 70, 68–73 (2012)

    Article  CAS  Google Scholar 

  8. A. Enesca, L. Andronic, A. Duta, Appl. Surf. Sci. 258, 4339–4346 (2012)

    Article  CAS  Google Scholar 

  9. T. Zhang, M. Paulose, R. Neupane, L.A. Schaffer, D.B. Rana, J. Su, L. Guo, O.K. Varghese, Sol. Energy Mat. Sol. C. 209, 110472 (2020)

    Article  CAS  Google Scholar 

  10. B. Gao, M. Sun, W. Ding, Z. Ding, W. Liu, Appl. Catal. B Environ. 281, 119492 (2021)

    Article  CAS  Google Scholar 

  11. M.M. Momeni, Y. Ghayeb, Ceram. Int. 42, 7014–7022 (2016)

    Article  CAS  Google Scholar 

  12. J. Ou, R.A. Rani, S. Balendhran, A.S. Zoolfakar, M.R. Field, S. Zhuiykov, A.P. O’Mullane, K. Kalantar-zadeh, Electrochem. Commun. 27, 128–132 (2013)

    Article  CAS  Google Scholar 

  13. E. Ahmadi, C.Y. Ng, K.A. Razak, Z. Lockman, J. Alloys Compd. 704, 518 (2017)

    Article  CAS  Google Scholar 

  14. K. Kalantar-zadeh, A.Z. Sadek, H. Zheng, V. Bansal, S.K. Bhargava, W. Wlodarski, J. Zhu, L. Yu, Z. Hu, Sens. Actuators B Chem. 142, 230 (2009)

    Article  CAS  Google Scholar 

  15. Q. Zeng, J. Li, J. Bai, X. Li, L. Xia, B. Zhou, Appl. Catal. B Environ. 202, 388 (2017)

    Article  CAS  Google Scholar 

  16. J. Zhang, X.L. Wang, X.H. Xia, C.D. Gu, Z.J. Zhao, J.P. Tu, Electrochim. Acta 55, 6953 (2010)

    Article  CAS  Google Scholar 

  17. A. Watcharenwong, W. Chanmanee, N.R. de Tacconi, C.R. Chenthamarakshan, P. Kajitvichyanukul, K. Rajeshwar, J. Electroanal. Chem. 612, 112 (2008)

    Article  CAS  Google Scholar 

  18. R.M. Fernández-Domene, R. Sánchez-Tovar, B. Lucas-Granados, G. Roselló-Márquez, J. García-Antón, Mater. Design 116, 160 (2017)

    Article  Google Scholar 

  19. W. Liu, M. Sun, Z. Ding, B. Gao, W. Ding, J. Alloys Compd. 877, 160223 (2021)

    Article  CAS  Google Scholar 

  20. W. Yang, G. Ma, Y. Fu, K. Peng, H. Yang, X. Zhan, W. Yang, L. Wang, H. Hou, Chem. Eng. J. 429, 132381 (2022)

    Article  CAS  Google Scholar 

  21. H. Zheng, A.Z. Sadek, K. Latham, K. Kalantar-Zadeh, Electrochem. Commun. 11, 768 (2009)

    Article  CAS  Google Scholar 

  22. M. Dinari, M.M. Momeni, M. Ahangarpour, Appl. Phys. A 122, 876 (2016)

    Article  Google Scholar 

  23. M. Feng, Y. Liu, Z. Zhao, H. Huang, Z. Peng, Mater. Res. Bull. 109, 168 (2019)

    Article  CAS  Google Scholar 

  24. W. Zhu, J. Liu, S. Yu, Y. Zhou, X. Yan, J. Hazard. Mater. 318, 407 (2016)

    Article  CAS  Google Scholar 

  25. J. Hu, L. Wang, P. Zhang, C. Liang, G. Shao, J. Power Sources 328, 28 (2016)

    Article  CAS  Google Scholar 

  26. H. Zhou, Z. Wen, J. Liu, J. Ke, X. Duan, S. Wang, Appl. Catal. B Environ. 242, 76 (2019)

    Article  CAS  Google Scholar 

  27. F. Han, H. Li, L. Fu, J. Yang, Z. Liu, Chem. Phys. Lett. 651, 183 (2016)

    Article  CAS  Google Scholar 

  28. X. Lin, M. Sun, B. Gao, Z. Zhang, S. Anandan, A. Umar, J. Alloys Compd. 850, 156653 (2021)

    Article  CAS  Google Scholar 

  29. H. Yang, J. Tang, Y. Luo, X. Zhan, Z. Liang, L. Jiang, H. Hou, W. Yang, Small 17, 2102307 (2021)

    Article  CAS  Google Scholar 

  30. Y. Zhao, L. Nie, H. Yang, K. Song, H. Hou, Colloid Surf. A 629, 127455 (2021)

    Article  CAS  Google Scholar 

  31. H. Zhao, Z. Liang, X. Liu, P. Qiu, H. Cui, J. Tian, Chin. J. Catal. 41, 333–340 (2020)

    Article  CAS  Google Scholar 

  32. J. Zhang, X. Liu, X. Wang, L. Mu, M. Yuan, B. Liu, H. Shi, J. Hazard. Mater. 359, 1 (2018)

    Article  CAS  Google Scholar 

  33. W. Zeng, T. Cai, Y. Liu, L. Wang, W. Dong, H. Chen, X. Xia, Chem. Eng. J. 381, 122691 (2020)

    Article  CAS  Google Scholar 

  34. G. Ma, J. Lu, Q. Meng, H. Lv, L. Shui, Y. Zhang, M. Jin, Z. Chen, M. Yuan, R. Nötzel, X. Wang, C. Wang, J. Liu, G. Zhou, Appl. Surf. Sci. 451, 306 (2018)

    Article  CAS  Google Scholar 

  35. J. Zhang, Y. Ma, Y. Du, H. Jiang, D. Zhou, S. Dong, Appl. Catal. B Environ. 209, 253 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The National Natural Science Foundation of China (No. 51404170), Tianjin Enterprise Science & Technology Commissioner Project (No. 21YDTPJC00450), and the Personnel Training Plan for Young and Middle-aged Innovation Talents in Universities in Tianjin of China financially supported this work. Yan Zhang did part of the analysis work, and I would like to express my gratitude. All the authors have no completing interests to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Hao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, L., Li, F., Hu, T. et al. WO3 films prepared by anodic oxidation in acid electrolytes and their photocatalytic activity of organic dye degradation. J Mater Sci: Mater Electron 33, 2921–2931 (2022). https://doi.org/10.1007/s10854-021-07491-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07491-0

Navigation