Skip to main content

Advertisement

Log in

Inlay-inspired meta-piezoelectric plates for the low-frequency vibration energy harvesting

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Different novel auxetic geometries are proposed applicable for the low-frequency vibration energy harvesting. The geometrical idea originally comes from the patterns employed in the inlaid work. The concept is applied to conventional beam-type energy harvesting resonators. Power extraction enhancement and reducing the resonance frequency are two objectives to be gained. Finite Element models are constructed, validated, and used in different parametric studies. Power amplification factors between 5.11 and 7.6 are achieved. Resonance frequencies also drop about 50 percent at the same time. A parametric study is carried out and the effects of different parameters including the excitation frequency, tuning electric resistance, and type of the piezoelectric material on the power extraction performance are investigated. The new auxetic layouts are proved to be promising in decreasing the resonator weights, improving the efficiency, and reducing the resonance frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data will be available upon request.

References

  1. J. Wang, L. Geng, L. Ding, H. Zhu, D. Yurchenko, The state-of-the-art review on energy harvesting from flow-induced vibrations. Appl. Energy 267, 114902 (2020). https://doi.org/10.1016/j.apenergy.2020.114902

    Article  Google Scholar 

  2. D.J.Y. Villarreal, Vortex resonance wind turbine. U.S. Patent, US9856854B2, 2018

  3. Z. Saadatnia, E. Asadi, H. Askari, E. Esmailzadeh, H.E. Naguib, A heaving point absorber-based triboelectric-electromagnetic wave energy harvester: an efficient approach toward blue energy. Int. J. Energy Res. 42(7), 2431–2447 (2018). https://doi.org/10.1002/er.4024

    Article  CAS  Google Scholar 

  4. D. Younesian, M.R. Alam, Multi-stable mechanisms for high-efficiency and broadband ocean wave energy harvesting. Appl. Energy 197, 292–302 (2017). https://doi.org/10.1016/j.apenergy.2017.04.019

    Article  Google Scholar 

  5. S. Khalid, I. Raouf, A. Khan, N. Kim, H.S. Kim, A review of human-powered energy harvesting for smart electronics: recent progress and challenges. Int. J. Precis. Eng. Manuf.-Green Technol. (2019). https://doi.org/10.1007/s40684-019-00144-y

    Article  Google Scholar 

  6. Y. Cao, A. Sha, Z. Liu, B. Luan, J. Li, W. Jiang, Electric energy output model of a piezoelectric transducer for pavement application under vehicle load excitation. Energy (2020). https://doi.org/10.1016/j.energy.2020.118595

    Article  Google Scholar 

  7. K.S. Chary, D.P. Chadalapaka, C.S. Kumbhar, H.S. Panda, High-performance lead free piezoelectric Y 2 O 3-Ba (Ti 0.96 Sn 0.04) O 3 nanofibers based flexible nanogenerator as energy harvester and self-powered vibration sensor. J. Mater. Sci.: Mater. Electron. 32(1), 113–124 (2021). https://doi.org/10.1007/s10854-020-04710-y

    Article  CAS  Google Scholar 

  8. J. Arunguvai, P. Lakshmi, Flexible nano-vibration energy harvester using three-phase polymer composites. J. Mater. Sci.: Mater. Electron. 31(11), 8283–8290 (2020). https://doi.org/10.1007/s10854-020-03363-1

    Article  CAS  Google Scholar 

  9. A. Hosseinkhani, D. Younesian, P. Eghbali, A. Moayedizadeh, A. Fassih, Sound and vibration energy harvesting for railway applications: a review on linear and nonlinear techniques. Energy Rep. 7, 852–874 (2021). https://doi.org/10.1016/j.egyr.2021.01.087

    Article  Google Scholar 

  10. X. Gao, J. Wu, Y. Yu, Z. Chu, H. Shi, S. Dong, Giant piezoelectric coefficients in relaxor piezoelectric ceramic PNN-PZT for vibration energy harvesting. Adv. Funct. Mater. 28(30), 1706895 (2018). https://doi.org/10.1002/adfm.201706895

    Article  CAS  Google Scholar 

  11. Q. Zhang, W. Cai, Q. Li, R. Gao, G. Chen, X. Deng, Z. Wang, X. Cao, C. Fu, Enhanced piezoelectric response of (Ba, Ca)(Ti, Zr) O3 ceramics by super large grain size and construction of phase boundary. J. Alloys Compd. 794, 542–552 (2019). https://doi.org/10.1016/j.jallcom.2019.04.247

    Article  CAS  Google Scholar 

  12. B. Gao, Z. Yao, D. Lai, Q. Guo, W. Pan, H. Hao, M. Cao, H. Liu, Unexpectedly high piezoelectric response in Sm-doped PZT ceramics beyond the morphotropic phase boundary region. J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2020.155474

    Article  Google Scholar 

  13. Y. Dong, T. Yang, Z. Xiao, Y. Liu, X. Wang, Performance enhancement of PZT material for circular diaphragm energy harvester. J. Mater. Sci. Mater. Electron. 26, 7921–7926 (2015). https://doi.org/10.1007/s10854-015-3445-x

    Article  CAS  Google Scholar 

  14. S. Saxena, R.K. Dwivedi, V. Khare, Multi-piezoelectric materials based doubly clamped energy harvester. J. Mater. Sci. Mater. Electron. 31, 6998–7011 (2020). https://doi.org/10.1007/s10854-020-03266-1

    Article  CAS  Google Scholar 

  15. M. Zeyrek Ongun, S. Oguzlar, E.C. Doluel, U. Kartal, M. Yurddaskal, Enhancement of piezoelectric energy-harvesting capacity of electrospun β-PVDF nanogenerators by adding GO and rGO. J. Mater. Sci. Mater. Electron 31, 1960–1968 (2020). https://doi.org/10.1007/s10854-019-02715-w

    Article  CAS  Google Scholar 

  16. Y. Dong, T. Yang, Z. Xiao, Y. Liu, X. Wang, Performance enhancement of PZT material for circular diaphragm energy harvester. J. Mater. Sci. Mater. Electrn 26, 7921–7926 (2015). https://doi.org/10.1007/s10854-015-3445-x

    Article  CAS  Google Scholar 

  17. W.J. Ferguson, Y. Kuang, K.E. Evans, C.W. Smith, M. Zhu, Auxetic structure for increased power output of strain vibration energy harvester. Sens. Actuators A: Phys. 282, 90–96 (2018). https://doi.org/10.1016/j.sna.2018.09.019

    Article  CAS  Google Scholar 

  18. P. Eghbali, D. Younesian, S. Farhangdoust, Enhancement of the low-frequency acoustic energy harvesting with auxetic resonators. Appl. Energy 270, 115217 (2020). https://doi.org/10.1016/j.apenergy.2020.115217

    Article  Google Scholar 

  19. P. Eghbali, D. Younesian, S. Farhangdoust, Enhancement of piezoelectric vibration energy harvesting with auxetic boosters. Int. J. Energy Res. 44(2), 1179–1190 (2020). https://doi.org/10.1002/er.5010

    Article  Google Scholar 

  20. J.M. Ramírez, C.D. Gatti, S.P. Machado, M. Febbo, A multi-modal energy harvesting device for low-frequency vibrations. Extreme Mech. Lett. 22, 1–7 (2018). https://doi.org/10.1016/j.eml.2018.04.003

    Article  Google Scholar 

  21. J.M. Ramírez, C.D. Gatti, S.P. Machado, M. Febbo, A piezoelectric energy harvester for rotating environment using a linked E-shape multi-beam. Extreme Mech. Lett. 27, 8–19 (2019). https://doi.org/10.1016/j.eml.2018.12.005

    Article  Google Scholar 

  22. Y. Wu, J. Qiu, S. Zhou, H. Ji, Y. Chen, S. Li, A piezoelectric spring pendulum oscillator used for multi-directional and ultra-low frequency vibration energy harvesting. Appl. Energy 231, 600–614 (2018). https://doi.org/10.1016/j.apenergy.2018.09.082

    Article  Google Scholar 

  23. T. Tsukamoto, Y. Umino, S. Shiomi, K. Yamada, T. Suzuki, Bimorph piezoelectric vibration energy harvester with flexible 3D meshed-core structure for low frequency vibration. Sci. Technol. Adv. Mater. 19(1), 660–668 (2018). https://doi.org/10.1080/14686996.2018.1508985

    Article  CAS  Google Scholar 

  24. C. Wang, Q. Zhang, W. Wang, Low-frequency wideband vibration energy harvesting by using frequency up-conversion and quin-stable nonlinearity. J. Sound Vib. 399, 169–181 (2017). https://doi.org/10.1016/j.jsv.2017.02.048

    Article  Google Scholar 

  25. N. Tran, M.H. Ghayesh, M. Arjomandi, Ambient vibration energy harvesters: a review on nonlinear techniques for performance enhancement. Int. J. Eng. Sci. 127, 162–185 (2018). https://doi.org/10.1016/j.ijengsci.2018.02.003

    Article  Google Scholar 

  26. H. Ji, Y. Liang, J. Qiu, L. Cheng, Y. Wu, Enhancement of vibration based energy harvesting using compound acoustic black holes. Mech. Syst. Signal Process. 132, 441–456 (2019). https://doi.org/10.1016/j.ymssp.2019.06.034

    Article  Google Scholar 

  27. Z. Yan, W. Sun, M.R. Hajj, W. Zhang, T. Tan, Ultra-broadband piezoelectric energy harvesting via bistable multi-hardening and multi-softening. Nonlinear Dyn. (2020). https://doi.org/10.1007/s11071-020-05594-7

    Article  Google Scholar 

  28. J. Wang, L. Geng, S. Zhou, Z. Zhang, Z. Lai, D. Yurchenko, Design, modeling and experiments of broadband tristable galloping piezoelectric energy harvester. Acta Mechanica Sinica (2020). https://doi.org/10.1007/s10409-020-00928-5

    Article  Google Scholar 

  29. L. Xiong, L. Tang, K. Liu, B.R. Mace, Broad piezoelectric vibration energy harvesting using a nonlinear energy sink. J. Phys. D: Appl. Phys. 51(18), 185502 (2018). https://doi.org/10.1088/1361-6463/aab9e3

    Article  CAS  Google Scholar 

  30. H. Xiao, X. Wang, S. John, A multi-degree of freedom piezoelectric vibration energy harvester with piezoelectric elements inserted between two nearby oscillators. Mech. Syst. Signal Process. 68, 138–154 (2016). https://doi.org/10.1016/j.ymssp.2015.07.001

    Article  Google Scholar 

  31. H. Fu, Z. Sharif-Khodaei, F. Aliabadi, A bio-inspired host-parasite structure for broadband vibration energy harvesting from low-frequency random sources. Appl. Phys. Lett. 114(14), 143901 (2019). https://doi.org/10.1063/1.5092593

    Article  CAS  Google Scholar 

  32. A. Ibrahim, A. Ramini, S. Towfighian, Triboelectric energy harvester with large bandwidth under harmonic and random excitations. Energy Rep. 6, 2490–2502 (2020). https://doi.org/10.1016/j.egyr.2020.09.007

    Article  Google Scholar 

  33. M. Ranjbar, L. Boldrin, F. Scarpa, S. Neild, S. Patsias, Vibroacoustic optimization of anti-tetrachiral and auxetic hexagonal sandwich panels with gradient geometry. Smart Mater. Str. 25(5), 054012 (2016). https://doi.org/10.1088/0964-1726/25/5/054012

    Article  CAS  Google Scholar 

  34. M.S. Mazloomi, M. Ranjbar, L. Boldrin, F. Scarpa, S. Patsias, N. Ozada, Vibroacoustics of 2D gradient auxetic hexagonal honeycomb sandwich panels. Compos. Str. 187, 593–603 (2018). https://doi.org/10.1016/j.compstruct.2017.10.077

    Article  Google Scholar 

  35. A. Hosseinkhani, D. Younesian, M. Ranjbar, Vibro-acoustic analysis and topology optimization of anti-tetra chiral auxetic lattices driven by different colored noises. Int. J. Struct. Stab. Dyn. (2021). https://doi.org/10.1142/S0219455420501138

    Article  Google Scholar 

  36. A. Hosseinkhani, D. Younesian, A.O. Krushynska, M. Ranjbar, F. Scarpa, Full-gradient optimization of the vibroacoustic performance of (non-)auxetic sandwich panels. Transp. Porous Media (2021). https://doi.org/10.1007/s11242-021-01693-0

    Article  Google Scholar 

  37. A. Bonfanti, A. Bhaskar, Elastic stabilization of wrinkles in thin films by auxetic microstructure. Extreme Mechan Lett. 33, 100556 (2019). https://doi.org/10.1016/j.eml.2019.100556

    Article  Google Scholar 

  38. Wang, L. et al. Contribution discrimination of auxetic cantilever for increased piezoelectric output in vibration energy harvesting., 2021 In: Proceedings of the 16th annual IEEE international conference on nano/micro engineered and molecular systems, NEMS, pp.513–517 (Institute of Electrical and Electronics Engineers Inc., 2021), https://doi.org/10.1109/NEMS51815.2021.9451435

  39. F. Ebrahimian, Z. Kabirian, D. Younesian, P. Eghbali, Auxetic clamped-clamped resonators for high-efficiency vibration energy harvesting at low-frequency excitation. Appl. Energy 295, 117010 (2021). https://doi.org/10.1016/j.apenergy.2021.117010

    Article  Google Scholar 

  40. Q. Li, Y. Kuang, M. Zhu, Auxetic piezoelectric energy harvesters for increased electric power output. AIP Adv. 7, 015104 (2017). https://doi.org/10.1063/1.4974310

    Article  Google Scholar 

  41. K. Chen et al., An auxetic nonlinear piezoelectric energy harvester for enhancing efficiency and bandwidth. Appl. Energy 298, 117274 (2021). https://doi.org/10.1016/j.apenergy.2021.117274

    Article  Google Scholar 

  42. A. Erturk, D.J. Inman, Piezoelectric Energy Harvesting (John Wiley & Sons, 2011)

    Book  Google Scholar 

Download references

Funding

There is no funding to declare.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, DY, PE; methodology, DY, PE; software, ZK and FE; formal analysis, Z.K. and FE; resources, ZK and FE; data curation, ZK and FE; writing—original draft, DY, PE; writing—review and editing, DY, PE; visualization, ZK.

Corresponding author

Correspondence to Davood Younesian.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabirian, Z., Ebrahimian, F., Younesian, D. et al. Inlay-inspired meta-piezoelectric plates for the low-frequency vibration energy harvesting. J Mater Sci: Mater Electron 33, 2909–2920 (2022). https://doi.org/10.1007/s10854-021-07489-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07489-8

Navigation