Skip to main content
Log in

The enhanced humidity sensing performance of calixarene/PMMA hybrid layers: QCM sensing mechanism

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper describes the preparation of the calix-4/PMMA hybrid QCM sensor by electrospinning of calix[4]arene derivative having carboxylic acid moieties (Calix-4) and poly(methyl methacrylate) (PMMA) as the humidity sensing material. The characterization of calix-4/PMMA hybrid sensors was conducted by microscopic surface imaging and contact angle analysis. The proposed sensors were then tested towards different RH environments ranging from 11 to 98% in a closed testing chamber to get response/recovery cycles. Initial experiments revealed that the highest response was observed by calix-4/PMMA (5:10). The sensor sensitivity (S) of the calix-4/PMMA (5:10) coated QCM sensor was obtained as 0.974 Hz/%RH. The response and recovery times of the proposed sensor were found as 20 and 30 s. The sensor’s repeatability and durability features were tested in five sequential adsorption/desorption cycles and during a month towards all relative humidity levels, respectively. The adsorption mechanism of humidity molecules was attributed to the hydrogen bonding due to –OH and –C=O groups in the structures of calix-4 and PMMA. Also, the adsorption phenomena were investigated by adapting the experimental results to the bimodal exponential adsorption model. The response and recovery rates were approached by using this model. Consequently, the QCM sensor combined with a suitable platform such as calix-4/PMMA may be a useful humidity detection agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Sen, F. Davis, R. Capan, Z. Ozbek, M.E. Ozel, G.A. Stanciu, A macrocyclic tetra-undecyl calix[4]resorcinarene thin film receptor for chemical vapour sensor applications. J. Incl. Phenom. Macrocycl. Chem. 98(3), 237–247 (2020). https://doi.org/10.1007/s10847-020-01024-8

    Article  CAS  Google Scholar 

  2. F. Temel, M. Tabakcı, Calix[4]arene coated qcm sensors for detection of voc emissions: methylene chloride sensing studies. Talanta 153, 221–227 (2016). https://doi.org/10.1016/j.talanta.2016.03.026

    Article  CAS  Google Scholar 

  3. F. Temel, E. Ozcelik, A.G. Ture, M. Tabakci, Sensing abilities of functionalized calix[4]arene coated QCM sensors towards volatile organic compounds in aqueous media. Appl. Surf. Sci. 412, 238–251 (2017). https://doi.org/10.1016/j.apsusc.2017.03.258

    Article  CAS  Google Scholar 

  4. E. Ozcelik, F. Temel, S. Erdemir, B. Tabakci, M. Tabakci, QCM sensors coated with calix[4]arenes bearing sensitive chiral moieties for chiral discrimination of 1-phenylethylamine enantiomers. J. Incl. Phenom. Macrocycl. Chem. 95(1), 35–48 (2019). https://doi.org/10.1007/s10847-019-00892-z

    Article  CAS  Google Scholar 

  5. E. Halay, Y. Acikbas, R. Capan, S. Bozkurt, M. Erdogan, R. Unal, A novel triazine–bearing calix[4]arene: Design, synthesis and gas sensing affinity for volatile organic compounds. Tetrahedron. 75(17), 2521–2528 (2019). https://doi.org/10.1016/j.tet.2019.03.027

    Article  CAS  Google Scholar 

  6. K.V. Kostyukevych, R.V. Khristosenko, A.S. Pavluchenko, A.A. Vakhula, Z.I. Kazantseva, I.A. Koshets, Y.M. Shirshov, A nanostructural model of ethanol adsorption in thin calixarene films. Sens. Actuators B Chem. 223, 470–480 (2016). https://doi.org/10.1016/j.snb.2015.09.123

    Article  CAS  Google Scholar 

  7. S. Kutluay, F. Temel, Silica gel based new adsorbent having enhanced voc dynamic adsorption/desorption performance. Colloids Surf. A Physicochem. Eng. Asp. 609, 125848 (2021). https://doi.org/10.1016/j.colsurfa.2020.125848

    Article  CAS  Google Scholar 

  8. F. Temel, One novel calix[4]arene based qcm sensor for sensitive, selective and high performance-sensing of formaldehyde at room temperature. Talanta 211, 120725 (2020). https://doi.org/10.1016/j.talanta.2020.120725

    Article  CAS  Google Scholar 

  9. F. Temel, S. Kutluay, Investigation of high-performance adsorption for benzene and toluene vapors by calix[4]arene based organosilica (cbos). New J. Chem. 44(30), 12949–12961 (2020). https://doi.org/10.1039/D0NJ02081H

    Article  CAS  Google Scholar 

  10. M. Akpinar, F. Temel, B. Tabakci, E. Ozcelik, M. Tabakci, A phenyl glycinol appended calix[4]arene film for chiral detection of ascorbic acid on gold surface. Anal. Biochem. (2019). https://doi.org/10.1016/j.ab.2019.113373

    Article  Google Scholar 

  11. F. Temel, Real-time and selective recognition of erythromycin by self-assembly of calix[4]arene on qcm sensor. J. Mol. Liquids (2020). https://doi.org/10.1016/j.molliq.2019.111818

    Article  Google Scholar 

  12. F. Temel, S. Erdemir, E. Ozcelik, B. Tabakci, M. Tabakci, Rapid and real-time detection of arginine enantiomers by QCM sensor having a calix[4]arene receptor bearing asymmetric centers. Talanta 204, 172–181 (2019). https://doi.org/10.1016/j.talanta.2019.05.093

    Article  CAS  Google Scholar 

  13. F. Temel, S. Erdemir, B. Tabakci, M. Akpinar, M. Tabakci, Selective chiral recognition of alanine enantiomers by chiral calix[4]arene coated quartz crystal microbalance sensors. Anal. Bioanal. Chem. 411(12), 2675–2685 (2019). https://doi.org/10.1007/s00216-019-01705-5

    Article  CAS  Google Scholar 

  14. U. H. Beat. Your body’s response to high humidity. (2014)

  15. K. Kumar, U. Kumar, M. Singh, B.C. Yadav, Synthesis and characterizations of exohedral functionalized graphene oxide with iron nanoparticles for humidity detection. J. Mater. Sci. Mater. Electron. 30(14), 13013–13023 (2019). https://doi.org/10.1007/s10854-019-01663-9

    Article  CAS  Google Scholar 

  16. Z. Zhao, J. Zhang, J. Zhang, C. Li, Y. Li, X. Wang, Capacitance-type mwcnts/sio2 humidity sensor based on capillary condensation and percolation theory. Sens. Actuators A Phys. 263, 648–653 (2017). https://doi.org/10.1016/j.sna.2017.07.030

    Article  CAS  Google Scholar 

  17. M.U. Khan, Q.M. Saqib, G. Hassan, J. Bae, All printed organic humidity sensor based on egg albumin. Sens. Bio-Sens. Res. (2020). https://doi.org/10.1016/j.sbsr.2020.100337

    Article  Google Scholar 

  18. D. Zhang, Y. Cao, P. Li, J. Wu, X. Zong, Humidity-sensing performance of layer-by-layer self-assembled tungsten disulfide/tin dioxide nanocomposite. Sens. Actuators B Chem. 265, 529–538 (2018). https://doi.org/10.1016/j.snb.2018.03.043

    Article  CAS  Google Scholar 

  19. S. Hong, M. Wu, Y. Hong, Y. Jeong, G. Jung, W. Shin, J. Park, D. Kim, D. Jang, J.-H. Lee, Fet-type gas sensors: a review. Sens. Actuators B Chem. (2020). https://doi.org/10.1016/j.snb.2020.129240

    Article  Google Scholar 

  20. M. Tannarana, P.M. Pataniya, S.A. Bhakhar, G.K. Solanki, J. Valand, S. Narayan, K.D. Patel, P.K. Jha, V.M. Pathak, Humidity sensor based on two-dimensional SnSe2/MWCNT nanohybrids for the online monitoring of human respiration and a touchless positioning interface. ACS Sustain. Chem. Eng. 8(33), 12595–12602 (2020). https://doi.org/10.1021/acssuschemeng.0c04027

    Article  CAS  Google Scholar 

  21. J. Miao, L. Cai, S. Zhang, J. Nah, J. Yeom, C. Wang, Air-stable humidity sensor using few-layer black phosphorus. ACS Appl. Mater. Interfaces 9(11), 10019–10026 (2017). https://doi.org/10.1021/acsami.7b01833

    Article  CAS  Google Scholar 

  22. T. Hayasaka, Y. Kubota, Y. Liu, L. Lin, The influences of temperature, humidity, and O2 on electrical properties of graphene fets. Sens. Actuators B Chem. 285, 116–122 (2019). https://doi.org/10.1016/j.snb.2019.01.037

    Article  CAS  Google Scholar 

  23. J. Dai, H. Zhao, X. Lin, S. Liu, Y. Liu, X. Liu, T. Fei, T. Zhang, Ultrafast response polyelectrolyte humidity sensor for respiration monitoring. ACS Appl. Mater. Interfaces 11(6), 6483–6490 (2019). https://doi.org/10.1021/acsami.8b18904

    Article  CAS  Google Scholar 

  24. S.-S. Bao, N.-Z. Li, J.M. Taylor, Y. Shen, H. Kitagawa, L.-M. Zheng, Co–Ca phosphonate showing humidity-sensitive single crystal to single crystal structural transformation and tunable proton conduction properties. Chem. Mater. 27(23), 8116–8125 (2015). https://doi.org/10.1021/acs.chemmater.5b03897

    Article  CAS  Google Scholar 

  25. M. Ahmadipour, M.F. Ain, Z.A. Ahmad, Fabrication of resistance type humidity sensor based on CaCu3Ti4O12 thick film. Measurement 94, 902–908 (2016). https://doi.org/10.1016/j.measurement.2016.09.030

    Article  Google Scholar 

  26. Z. Song, Z. Huang, J. Liu, Z. Hu, J. Zhang, G. Zhang, F. Yi, S. Jiang, J. Lian, J. Yan, J. Zang, H. Liu, Fully stretchable and humidity-resistant quantum dot gas sensors. ACS Sens. 3(5), 1048–1055 (2018). https://doi.org/10.1021/acssensors.8b00263

    Article  CAS  Google Scholar 

  27. C.K. Chung, O.K. Khor, C.J. Syu, S.W. Chen, Effect of oxalic acid concentration on the magnetically enhanced capacitance and resistance of AAO humidity sensor. Sens. Actuators B Chem. 210, 69–74 (2015). https://doi.org/10.1016/j.snb.2014.12.096

    Article  Google Scholar 

  28. J. Wu, C. Yin, J. Zhou, H. Li, Y. Liu, Y. Shen, S. Garner, Y. Fu, H. Duan, Ultrathin glass-based flexible, transparent, and ultrasensitive surface acoustic wave humidity sensor with ZnO nanowires and graphene quantum dots. ACS Appl. Mater. Interfaces 12(35), 39817–39825 (2020). https://doi.org/10.1021/acsami.0c09962

    Article  CAS  Google Scholar 

  29. Y. Tang, Z. Li, J. Ma, L. Wang, J. Yang, B. Du, Q. Yu, X. Zu, Highly sensitive surface acoustic wave (saw) humidity sensors based on sol–gel SiO2 films: investigations on the sensing property and mechanism. Sens. Actuators B Chem. 215, 283–291 (2015). https://doi.org/10.1016/j.snb.2015.03.069

    Article  CAS  Google Scholar 

  30. Q. Chen, N. Feng, X. Huang, Y. Yao, Y. Jin, W. Pan, D. Liu, Humidity-sensing properties of a biocl-coated quartz crystal microbalance. ACS Omega 5(30), 18818–18825 (2020). https://doi.org/10.1021/acsomega.0c01946

    Article  CAS  Google Scholar 

  31. Y. Zhu, W. Zhang, J. Xu, Preparation of functional ordered mesoporous carbons and their application as the QCM sensor with ultra-low humidity. Chin. Chem. Lett. 31(8), 2150–2154 (2020). https://doi.org/10.1016/j.cclet.2019.12.024

    Article  CAS  Google Scholar 

  32. E. Ahmetali, H.P. Karaoğlu, Y. Urfa, A. Altındal, M.B. Koçak, A series of asymmetric zinc (ii) phthalocyanines containing fluoro and alkynyl groups: synthesis and examination of humidity sensing performance by using qcm based sensor. Mater. Chem. Phys. (2020). https://doi.org/10.1016/j.matchemphys.2020.123477

    Article  Google Scholar 

  33. Z. Zhou, M.-X. Li, L. Wang, X. He, T. Chi, Z.-X. Wang, Antiferromagnetic copper(ii) metal–organic framework based quartz crystal microbalance sensor for humidity. Cryst. Growth Design. 17(12), 6719–6724 (2017). https://doi.org/10.1021/acs.cgd.7b01318

    Article  CAS  Google Scholar 

  34. E. Haghighi, S. Zeinali, Formaldehyde detection using quartz crystal microbalance (QCM) nanosensor coated by nanoporous mil-101(Cr) film. Microporous Mesoporous Mater. 300, 110065 (2020). https://doi.org/10.1016/j.micromeso.2020.110065

    Article  CAS  Google Scholar 

  35. H. Farahani, R. Wagiran, M.N. Hamidon, Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review. Sensors 14(5), 7881–7939 (2014). https://doi.org/10.3390/s140507881

    Article  CAS  Google Scholar 

  36. C. Zhang, X. Chen, D. Webb, G.-D. Peng, Water detection in jet fuel using a polymer optical fibre bragg grating, in 20th International Conference on Optical Fibre Sensors. (International Society for Optics and Photonics, Bellingham, 2009)

    Google Scholar 

  37. W. Zhang, D. Webb, G. Peng, Polymer optical fiber bragg grating acting as an intrinsic biochemical concentration sensor. Opt. Lett. 37(8), 1370–1372 (2012). https://doi.org/10.1364/OL.37.001370

    Article  CAS  Google Scholar 

  38. Y. Yao, X. Huang, B. Zhang, Z. Zhang, D. Hou, Z.-K. Zhou, Facile fabrication of high sensitivity cellulose nanocrystals based qcm humidity sensors with asymmetric electrode structure. Sens. Actuators B Chem. (2020). https://doi.org/10.1016/j.snb.2019.127192

    Article  Google Scholar 

  39. D. Zhang, H. Chen, X. Zhou, D. Wang, Y. Jin, Yu. In-situ polymerization of metal organic frameworks-derived ZnCo2o4/polypyrrole nanofilm on qcm electrodes for ultra-highly sensitive humidity sensing application. Sens. Actuators A Phys. 295, 687–695 (2019). https://doi.org/10.1016/j.sna.2019.06.050

    Article  CAS  Google Scholar 

  40. L. Wang, J. Xu, X. Wang, Z. Cheng, J. Xu, Facile preparation of n-rich functional polymer with porous framework as qcm sensing material for rapid humidity detection. Sens. Actuators B Chem. 288, 289–297 (2019). https://doi.org/10.1016/j.snb.2019.02.058

    Article  CAS  Google Scholar 

  41. N. Gao, H.-Y. Li, W. Zhang, Y. Zhang, Y. Zeng, H. Zhixiang, J. Liu, J. Jiang, L. Miao, F. Yi, H. Liu, Qcm-based humidity sensor and sensing properties employing colloidal SnO2 nanowires. Sens. Actuators B Chem. 293, 129–135 (2019). https://doi.org/10.1016/j.snb.2019.05.009

    Article  CAS  Google Scholar 

  42. S. Okur, M. Kus, F. Ozel, V. Aybek, M. Yimaz, Humidity adsorption kinetics of calix[4]arene derivatives measured using QCM technique. Talanta. 81(1), 248–251 (2010). https://doi.org/10.1016/j.talanta.2009.11.065

    Article  CAS  Google Scholar 

  43. S. Okur, M. Kus, F. Ozel, M. Yilmaz, Humidity adsorption kinetics of water soluble calix[4]arene derivatives measured using QCM technique. Sens. Actuators B Chem. 145(1), 93–97 (2010). https://doi.org/10.1016/j.snb.2009.11.040

    Article  CAS  Google Scholar 

  44. W. Zhang, D.J. Webb, Humidity responsivity of poly(methyl methacrylate)-based optical fiber bragg grating sensors. Opt. Lett. 39(10), 3026–3029 (2014). https://doi.org/10.1364/OL.39.003026

    Article  CAS  Google Scholar 

  45. K. Zhu, X. Cheng, Z. Zhao, C. Lu, High-sensitivity, high-resolution polymer fiber bragg grating humidity sensor harnessing microwave photonic filtering response analysis. Opt. Lett. 45(24), 6603–6606 (2020). https://doi.org/10.1364/OL.411221

    Article  Google Scholar 

  46. C.D. Gutsche, M. Iqbal, P-tert-butylcalix[4]arene. Organ. Synth. 68, 234 (1990). https://doi.org/10.15227/orgsyn.068.0234

    Article  CAS  Google Scholar 

  47. C.D. Gutsche, L.-G. Lin, Calixarenes 12: the synthesis of functionalized calixarenes. Tetrahedron 42(6), 1633–1640 (1986). https://doi.org/10.1016/S0040-4020(01)87580-3

    Article  CAS  Google Scholar 

  48. E.M. Collins, M.A. McKervey, E. Madigan, M.B. Moran, M. Owens, G. Ferguson, S.J. Harris, Chemically modified calix[4]arenes. Regioselective synthesis of 1,3-(distal) derivatives and related compounds. X-ray crystal structure of a diphenol-dinitrile. J. Chem. Soc. Perkin Trans. 1(12), 3137–3142 (1991). https://doi.org/10.1039/P19910003137

    Article  Google Scholar 

  49. Y. Yao, H. Zhang, J. Sun, W. Ma, L. Li, W. Li, J. Du, Novel qcm humidity sensors using stacked black phosphorus nanosheets as sensing film. Sens. Actuators B Chem. 244, 259–264 (2017). https://doi.org/10.1016/j.snb.2017.01.010

    Article  CAS  Google Scholar 

  50. C.D. Gutsche, M. Iqbal, D. Stewart, Calixarenes. 19. Syntheses procedures for p-tert-butylcalix[4]arene. J. Organ. Chem. 51(5), 742–745 (1986). https://doi.org/10.1021/jo00355a033

    Article  CAS  Google Scholar 

  51. E.S. Muckley, J. Lynch, R. Kumar, B. Sumpter, I.N. Ivanov, Pedot:Pss/qcm-based multimodal humidity and pressure sensor. Sens. Actuators B Chem. 236, 91–98 (2016). https://doi.org/10.1016/j.snb.2016.05.054

    Article  CAS  Google Scholar 

  52. F. Temel, I. Ozaytekin, The monitoring of hydrocarbon vapor by electrospun PBINF modified QCM chemosensor. Sens. Actuators A Phys. (2021). https://doi.org/10.1016/j.sna.2021.112688

    Article  Google Scholar 

  53. N. Horzum, D. Tascıoglu, S. Okur, M.M. Demir, Humidity sensing properties of ZnO-based fibers by electrospinning. Talanta 85(2), 1105–1111 (2011). https://doi.org/10.1016/j.talanta.2011.05.031

    Article  CAS  Google Scholar 

  54. P.-G. Su, L.-G. Lin, W.-H. Tzou, Humidity sensing properties of calix[4]arene and functionalized calix[4]arene measured using a quartz-crystal microbalance. Sens. Actuators B Chem. 181, 795–801 (2013). https://doi.org/10.1016/j.snb.2013.02.038

    Article  CAS  Google Scholar 

  55. X. Zhou, T. Jiang, J. Zhang, X. Wang, Z. Zhu, Humidity sensor based on quartz tuning fork coated with sol–gel-derived nanocrystalline zinc oxide thin film. Sens. Actuators B Chem. 123(1), 299–305 (2007). https://doi.org/10.1016/j.snb.2006.08.034

    Article  CAS  Google Scholar 

  56. Z. Baatout, S. Teka, N. Jaballah, N. Sakly, X. Sun, F. Maurel, M. Majdoub, Water-insoluble cyclodextrin membranes for humidity detection: green synthesis, characterization and sensing performances. J. Mater. Sci. 53(2), 1455–1469 (2018). https://doi.org/10.1007/s10853-017-1561-0

    Article  CAS  Google Scholar 

  57. X. Li, X. Chen, Y. Yao, N. Li, X. Chen, X. Bi, Multi-walled carbon nanotubes/graphene oxide composites for humidity sensing. IEEE Sens. J. 13(12), 4749–4756 (2013). https://doi.org/10.1109/JSEN.2013.2273615

    Article  CAS  Google Scholar 

  58. T. Addabbo, A. Fort, M. Mugnaini, M. Tani, V. Vignoli, M. Bruzzi, Quartz crystal microbalance sensors based on TiO2 nanoparticles for gas sensing, in 2017 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). (IEEE, Turin, 2017), pp. 1–6

    Google Scholar 

  59. A. Erol, S. Okur, N. Yagmurcukardes, M.C. Arikan, Humidity-sensing properties of a zno nanowire film as measured with a QCM. Sens. Actuators B Chem. 152(1), 115–120 (2011). https://doi.org/10.1016/j.snb.2010.09.005

    Article  CAS  Google Scholar 

  60. N. Asar, A. Erol, S. Okur, M.C. Arikan, Morphology-dependent humidity adsorption kinetics of ZnO nanostructures. Sens. Actuators A Phys. 187, 37–42 (2012). https://doi.org/10.1016/j.sna.2012.08.019

    Article  CAS  Google Scholar 

  61. S. Muhammad, A. Irfan, A.G. Al-Sehemi, M.S. Al-Assiri, A. Kalam, A.R. Chaudhry, Quantum chemical investigation of spectroscopic studies and hydrogen bonding interactions between water and methoxybenzeylidene-based humidity sensor. J. Theor. Comput. Chem. 14(04), 1550029 (2015). https://doi.org/10.1142/s0219633615500297

    Article  CAS  Google Scholar 

  62. Q. Fatima, A.A. Haidry, Z. Yao, Y. He, Z. Li, L. Sun, L. Xie, The critical role of hydroxyl groups in water vapor sensing of graphene oxide. Nanoscale Adv. 1(4), 1319–1330 (2019). https://doi.org/10.1039/C8NA00135A

    Article  CAS  Google Scholar 

  63. H. Bi, K. Yin, X. Xie, J. Ji, S. Wan, L. Sun, M. Terrones, M.S. Dresselhaus, Ultrahigh humidity sensitivity of graphene oxide. Sci. Rep. 3(1), 2714 (2013). https://doi.org/10.1038/srep02714

    Article  Google Scholar 

  64. Z. Chen, C. Lu, Humidity sensors: a review of materials and mechanisms. Sens. Lett. 3(4), 274–295 (2005). https://doi.org/10.1166/sl.2005.045

    Article  CAS  Google Scholar 

  65. E. McCafferty, A.C. Zettlemoyer, Adsorption of water vapour on α-Fe2O3. Discuss. Faraday Soc. 52(0), 239–254 (1971). https://doi.org/10.1039/DF9715200239

    Article  Google Scholar 

  66. N. Sakly, A. Haj Said, H. Ben Ouada, Humidity-sensing properties of ZnO QDs coated QCM: optimization, modeling and kinetic investigations. Mater. Sci. Semicond. Process. 27, 130–139 (2014). https://doi.org/10.1016/j.mssp.2014.06.027

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to thank the Research Foundation of Konya Technical University for financial support.

Author information

Authors and Affiliations

Authors

Contributions

All authors have participated in (a) conception and design or analysis and interpretation of the data; (b) drafting the article or revising it critically for important intellectual content, and (c) approval of the final version.

Corresponding author

Correspondence to Farabi Temel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 311.3 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Temel, F., Ozaytekin, I. The enhanced humidity sensing performance of calixarene/PMMA hybrid layers: QCM sensing mechanism. J Mater Sci: Mater Electron 33, 2801–2815 (2022). https://doi.org/10.1007/s10854-021-07484-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07484-z

Navigation