Skip to main content
Log in

Enhanced giant magnetoimpedance effect in FINEMET/TiO2 composite ribbons

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In order to study the influence of semiconductors on the magnetic properties and giant magnetoimpedance effect of FINEMET ribbon, titanium dioxide coating layer with different thickness was sputtered onto the free surface of the FINEMET ribbon by RF magnetron sputtering to prepare the FINEMET/TiO2 composite ribbons. The morphology, magnetic properties, and giant magnetoimpedance of the FINEMET/TiO2 composite ribbons were analyzed. The results show that the GMI ratio of composite ribbons first increases and then decreases with the increase of TiO2 layer thickness (0 ~ 150 nm). When the thickness of TiO2 thin film is 100 nm, the GMI ratio reaches the maximum 57.3%, which indicates that a certain thickness of TiO2 thin film can significantly improve the GMI effect. The result can be explained by the combined result of electromagnetic interaction and stress between TiO2 thin film and the FINEMET ribbon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K. Mohri, T. Kohsawa, K. Kawashima, H. Yoshida, L.V. Panina, Magneto-inductive effect (MI effect) in amorphous wires. IEEE Trans. Magn. 28, 3150–3152 (1992)

    Article  CAS  Google Scholar 

  2. L.V. Panina, K. Mohri, K. Bushida, M. Noda, Giant magneto-impedance and magneto-inductive effects in amorphous alloys. J. Appl. Phys. 76, 6198–6203 (1994)

    Article  CAS  Google Scholar 

  3. M. Knobel, M. Vázquez, L. Kraus, Giant magnetoimpedance. Handb. Magn. Mater. 15, 497–563 (2003)

    Article  CAS  Google Scholar 

  4. J.T. Zou, Y.J. Chen, X.F. Shu, X. Li, Y.N. Song, Z.J. Zhao, Proper PH value enhances giant magneto-impedance effect of FINEMET/rGO composite ribbons by electroless plating. Mater. Sci. Eng. B 265, 115004 (2021)

    Article  CAS  Google Scholar 

  5. S.N. Nejad, R. Mansour, G.X. Miao, Post-processed thin-film gmi magnetic sensors. IEEE Trans. Magn. 52, 2800604 (2016)

    Google Scholar 

  6. A.E. Mahdi, L. Panina, D. Mapps, Some new horizons in magnetic sensing: high-Tc SQUIDs, GMR and GMI materials. Sens. Actuator A-Phys. 105, 271–285 (2003)

    Article  CAS  Google Scholar 

  7. C. Kang, T. Wang, C.J. Jiang, K. Chen, G.Z. Chai, Investigation of the giant magneto-impedance effect of single crystalline YIG based on the ferromagnetic resonance effect. J. Alloy. Compd. 865, 158903 (2021)

    Article  CAS  Google Scholar 

  8. A. Asfour, M. Zidi, J.P. Yonnet, High frequency amplitude detector for GMI magnetic sensors. Sensors 14, 24502–24522 (2014)

    Article  Google Scholar 

  9. K. Mohri, T. Uchiyama, L.V. Panina, M. Yamamoto, K. Bushida, Recent advances of amorphous wire CMOS IC magneto-impedance sensors: innovative high-performance micromagnetic sensor chip. J. Sens. 2015, 718069 (2015)

    Article  Google Scholar 

  10. T. Uchiyama, K. Mohri, H. Itho, K. Nakashima, J. Ohuchi, Y. Sudo, Car traffic monitoring system using MI sensor built-in disk set on the road. IEEE Trans. Magn. 36, 3670–3672 (2000)

    Article  Google Scholar 

  11. P. Delooze, L.V. Panina, D.J. Mapps, K. Ueno, H. Sano, Effect of transverse magnetic field on thin-film magneto impedance and application to magnetic recording. J. Magn. Magn. Mater. 272–276, 2266–2268 (2004)

    Article  Google Scholar 

  12. Y. Zhu, Q. Zhang, X. Li, H.L. Pan, J.T. Wang, Z.J. Zhao, Detection of AFP with an ultra-sensitive giant magnetoimpedance biosensor. Sens. Actuator B-Chem. 293, 53–58 (2019)

    Article  CAS  Google Scholar 

  13. H. Kikuchi, R. Tschuncky, K. Szielasko, Challenges for detection of small defects of submillimeter size in steel using magnetic flux leakage method with higher sensitive magnetic field sensors. Sens. Actuator A-Phys. 300, 111642 (2019)

    Article  CAS  Google Scholar 

  14. A. Esper, B. Dufay, S. Saez, C. Dolabdjian, Theoretical and experimental investigation of temperature-compensated off-diagonal GMI magnetometer and its long-term stability. IEEE Sens. J. 20, 9046–9055 (2020)

    CAS  Google Scholar 

  15. Y. Han, X. Li, W.X. Lv, W.H. Xie, Q. Zhao, Z.J. Zhao, Magnetoimpedance effect of FINEMET ribbons coated with Fe20Ni80 permalloy film. J. Alloy. Compd. 678, 494–498 (2016)

    Article  CAS  Google Scholar 

  16. M.H. Phan, H.X. Peng, M.T. Tung, N.V. Dung, N.H. Nghi, Optimized GMI effect in electrodeposited CoP/Cu composite wires. J. Magn. Magn. Mater. 316, 244–247 (2007)

    Article  CAS  Google Scholar 

  17. L. Chen, Y. Zhou, C. Lei, Z.M. Zhou, Effect of sputtering parameters and sample size on giant magnetoimpedance effect in NiFe and NiFe/Cu/NiFe films. Mater. Sci. Eng. B 172, 101–107 (2010)

    Article  CAS  Google Scholar 

  18. T. Eggers, D.S. Lam, O. Thiabgoh, J. Marcin, P. Švec, N.T. Huong, I. Škorvánek, M.H. Phan, Impact of the transverse magnetocrystalline anisotropy of a Co coating layer on the magnetoimpedance response of FeNi-rich nanocrystalline ribbon. J. Alloy. Compd. 741, 1105–1111 (2018)

    Article  CAS  Google Scholar 

  19. A. Dadsetan, M. Almasi Kashi, S.M. Mohseni, ZnO thin layer/Fe-based ribbon/ZnO thin layer sandwich structure: Introduction of a new GMI optimization method. J. Magn. Magn. Mater. 493, 165697 (2020)

    Article  CAS  Google Scholar 

  20. A.A. Taysioglu, Y. Kaya, A. Peksoz, S.K. Akay, N. Derebasi, G. Irez, G. Kaynak, Giant magneto-impedance effect in thin zinc oxide coated on Co-based (2705 X) amorphous ribbons. IEEE Trans. Magn. 46, 405–407 (2010)

    Article  CAS  Google Scholar 

  21. A.A. Taysioglu, A. Peksoz, Y. Kaya, N. Derebasi, G. lrez, G. Kaynak, GMI effect in CuO coated Co-based amorphous ribbons. J. Alloy. Compd. 487, 38–41 (2009)

    Article  CAS  Google Scholar 

  22. Y. Yoshizawa, S. Oguma, K. Yamauchi, New Fe-based soft magnetic alloys composed of ultrafine grain structure. J. Appl. Phys. 64, 6044–6046 (1998)

    Article  Google Scholar 

  23. R.K. Nutor, X.J. Wu, X.Z. Fan, X.W. He, X.N. Lu, Y.Z. Fang, Effects of applying tensile stress during annealing on the GMI and induced anisotropy of Fe-Cu-Nb-Si-B alloys. J. Magn. Magn. Mater. 471, 544–548 (2019)

    Article  Google Scholar 

  24. X.Y. Pan, M.Q. Yang, X.Z. Fu, N. Zhang, Y.J. Xu, Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications. Nanoscale 5, 3601–3614 (2013)

    Article  CAS  Google Scholar 

  25. S. Ghosh, P.M.G. Nambissan, Evidence of oxygen and Ti vacancy induced ferromagnetism in post-annealed undoped anatase TiO2 nanocrystals: a spectroscopic analysis. J. Solid State Chem. 275, 174–180 (2019)

    Article  CAS  Google Scholar 

  26. N. Khaliq, M.A. Rasheed, G. Cha, M. Khan, S. Karim, P. Schmuki, G. Ali, Development of non-enzymatic cholesterol bio-sensor based on TiO2 nanotubes decorated with Cu2O nanoparticles. Sens. Actuator B-Chem. 302, 127200 (2020)

    Article  CAS  Google Scholar 

  27. D. Kim, J.S. Hong, Y.R. Park, K.J. Kim, The origin of oxygen vacancy induced ferromagnetism in undoped TiO2. J. Phys. Condes. Matter 21, 195405 (2009)

    Article  Google Scholar 

  28. K.S. Yang, Y. Dai, B.B. Huang, Y.P. Feng, Density-functional characterization of antiferromagnetism in oxygen-deficient anatase and rutile TiO2. Phys. Rev. B 81, 033202 (2010)

    Article  Google Scholar 

  29. H. Geng, J.Q. Wei, Z.W. Wang, S.J. Nie, H.Z. Guo, L.S. Wang, Y. Chen, G.H. Yue, D.L. Peng, Soft magnetic property and high-frequency permeability of [Fe80Ni20-O/TiO2]n multilayer thin films. J. Alloy. Compd. 576, 13–17 (2013)

    Article  CAS  Google Scholar 

  30. C. Wu, W.Y. Ding, F. Wang, Y.B. Lu, M. Yan, Amorphousness induced significant room temperature ferromagnetism of TiO2 thin films. Appl. Phys. Lett. 111, 152408 (2017)

    Article  Google Scholar 

  31. T. Goto, Fe-B and Fe-Si-B system alloy filaments produced by glass-coated melt spinning. Transactions of the Japan Institute of Metals 21, 219–225 (1980)

    Article  CAS  Google Scholar 

  32. J.T. Zou, Y.J. Chen, X. Li, Y. Song, Z.J. Zhao, Observation of the transition state of domain wall displacement and GMI effect of FINEMET/graphene composite ribbons. RSC Adv. 9, 39133–39142 (2019)

    Article  CAS  Google Scholar 

  33. B. Hernando, P. Gorria, M. L. Sánchez, V. M. Prida, G. V. Kurlyandskaya, Magnetoimpedance in Nanocrystalline Alloys, Encyclopedia of Nanoscience and Nanotechnology, X (2003) 1–19.

  34. M. Knobel, K.R. Pirota, Giant magnetoimpedance: concepts and recent progress. J. Magn. Magn. Mater. 242, 33–40 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 11774091).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. J. Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Guo, Y.B., Long, B.Y. et al. Enhanced giant magnetoimpedance effect in FINEMET/TiO2 composite ribbons. J Mater Sci: Mater Electron 33, 2744–2752 (2022). https://doi.org/10.1007/s10854-021-07480-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07480-3

Navigation