Skip to main content
Log in

Constitutive, creep, and fatigue behavior of sintered Ag for finite element simulation of mechanical reliability: a critical review

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Due to the miniaturization development in the electronic packaging industry and the significant thermal management requirement for high-power electronic devices, the sintered Ag has become one of the promising die-attach materials. Nevertheless, the mechanical reliability of the sintered Ag is still undergoing intensive examinations and investigations by both academy and industry. In this paper, the research progress is reviewed by focusing on the tensile, creep, and fatigue properties of sintered Ag in recent years to facilitate finite element (FE) simulations of mechanical reliability. The purpose is to obtain the mechanical reliability of the sintered Ag at a low cost by combining FE simulation. Firstly, to understand the constitutive behavior and quantify the mechanical properties as the basis of FE analysis, the stress–strain curves of the sintered Ag are adopted from tensile tests subjected to varying strain rates and temperatures. As the high temperature is the most influential factor in the service condition of die-attach materials, the relationship between constitutive parameters and temperatures is summarized. To quantify the creep behavior of packaging structures in the long-term service state, the constitutive models for creep under shear strain are addressed and the steady-state creep strain rate is emphasized. The influence of temperature and applied shear stress on creep strain rate is revealed. Regarding the effect of sintering condition on creep deformation, it is further explained that a higher applied pressure during the sintering process improves the initial shear strength of Ag lap joints and thus enhance the creep resistance against shear deformation. Finally, the fatigue behavior with damage accumulation under cyclic shear loading is reviewed by focusing on the evolutions of ratcheting response and hysteresis loop. To complement the FE predictions of mechanical reliability, the empirical damage models and fatigue life models are discussed to achieve a concise understanding of the mechanical reliability of sintered Ag under coupled thermo-mechanical loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. S.F. Choudhury, L. Ladani, Experimental observation of the effect of crystallographic orientation on mechanical behavior of single crystal Cu6Sn5 intermetallic. Asme Int. Tech. Conf. Exhibit. Packag. Integrat. Electron. Photo. Microsyst. (2013). https://doi.org/10.1115/IPACK2013-73315

    Article  Google Scholar 

  2. M.N. Islam, A. Sharif, Y.C. Chan, Effect of volume in interfacial reaction between eutectic Sn–3.5% Ag–0.5% Cu solder and Cu metallization in microelectronic packaging. J. Electron. Mater. 34(2), 143–149 (2005)

    CAS  Google Scholar 

  3. L. Yi, C.P. Wong, Recent advances of conductive adhesives as a lead-free alternative in electronic packaging: materials, processing, reliability and applications. Mater. Sci. Eng. R Rep. 51(1–3), 1–35 (2006)

    Google Scholar 

  4. T. Licht, R. Speckels, M. Thoben, Sintering technology used for interconnection of large areas: potential and limitation for power modules, International Conference on Integrated Power Electronics Sytems, (2010)

  5. H. Wang, X. Hu, X. Jiang, Effects of Ni modified MWCNTs on the microstructural evolution and shear strength of Sn–3.0Ag–0.5Cu composite solder joints. Mater. Charact. 163, 110287 (2020)

    CAS  Google Scholar 

  6. S. Bontemps, L. Azzopardi, F. Henaff, T. Youssef, J. Joguet, Lifetime evaluation of nanoscale silver sintered power modules for automotive application based on experiments and finite-element modeling. IEEE Trans. Dev. Mater. Reliab. 15(3), 326–334 (2015)

    Google Scholar 

  7. J. Villain, O.S. Brueller, T. Qasim, Creep behaviour of lead free and lead containing solder materials at high homologous temperatures with regard to small solder volumes. Sens. Actuators. A Phys. 99(1–2), 194–197 (2002)

    CAS  Google Scholar 

  8. A. Torbati-Sarraf, R. Mahmudi, A.R. Geranmayeh, A. Baradaran-Goorani, Creep of lead-free Sn–3.8Ag and Sn–3.8Ag–0.7Cu solder alloy as replacements of Sn-Pb solder used in microelectronic packaging, Electronic Manufacturing Technology Symposium (IEMT), 33rd IEEE/CPMT International, (2008)

  9. J.H. Lau, S.H. Pan, Creep behaviors of flip chip on board with 96.5Sn–3.5Ag and 100In lead-free solder joints. Int. J. Microcirc. Electron. Packag. 24(1), 11–18 (2000)

    Google Scholar 

  10. W.D. MacDonald, T.W. Eagar, Transient liquid phase bonding. Annu. Rev. Mater. Sci. 22, 23–46 (1992)

    CAS  Google Scholar 

  11. K.S. Siow, Y.T. Lin, Identifying the development state of sintered silver (Ag) as a bonding material in the microelectronic packaging via a patent landscape study. J. Electron. Packag. 138(3), 020804 (2016)

    Google Scholar 

  12. I. Tuah-Poku, M. Dollar, T.B. Massalski, A study of the transient liquid phase bonding process applied to a Ag/Cu/Ag sandwich joint. Metall. Trans. A 19(3), 675–686 (1988)

    Google Scholar 

  13. W.B. Tang, X. Long, F.Q. Yang, Tensile deformation and microstructures of Sn–3.0Ag–0.5Cu solder joints: effect of annealing temperature—sciencedirect. Microelectron. Reliab. 104, 113555 (2020)

    CAS  Google Scholar 

  14. L. Zhang, C.W. He, Y.H. Guo, Development of SnAg-based lead free solders in electronics packaging. Microelectron. Reliab. 52(3), 559–578 (2012)

    CAS  Google Scholar 

  15. H.Z. Wang, X.W. Hu, X.X. Jiang, Effects of Ni modified MWCNTs on the microstructural evolution and shear strength of Sn-3.0Ag–0.5Cu composite solder joints. Mater. Charact. 163, 110287 (2020)

    CAS  Google Scholar 

  16. H.Z. Wang, X.W. Hu, X.X. Jiang, Y.L. Li, Interfacial reaction and shear strength of ultrasonically-assisted Sn-Ag-Cu solder joint using composite flux. J. Manuf. Process 62(12), 291–301 (2021)

    Google Scholar 

  17. X.W. Hu, H. Xu, W.J. Chen, X.X. Jiang, Effects of ultrasonic treatment on mechanical properties and microstructure evolution of the Cu/SAC305 solder joints. J. Manuf. Process 64, 648–654 (2021)

    Google Scholar 

  18. C. Buttay, D. Planson, B. Allard, D. Bergogne, P. Bevilacqua, C. Joubert, M. Lazar, C. Martin, H. Morel, D. Tournier, C. Raynaud, State of the art of high temperature power electronics. Mater. Sci. Eng. B 176(4), 283–288 (2011)

    CAS  Google Scholar 

  19. V.R. Manikam, K.Y. Cheong, Die attach materials for high temperature applications: a review. IEEE Trans. Compon. Packag. Manuf. Technol. 1(4), 457–478 (2011)

    CAS  Google Scholar 

  20. T.F. Chen, K.S. Siow, Comparing the mechanical and thermal-electrical properties of sintered copper (Cu) and sintered silver (Ag) joints. J. Alloy. Compd. 866, 158783 (2021)

    CAS  Google Scholar 

  21. K.S. Siow, Are sintered silver joints ready for use as interconnect material in microelectronic packaging? J. Electron. Mater. 43(4), 947–961 (2014)

    CAS  Google Scholar 

  22. G.Q. Lu, J.N. Calata, Z. Zhang, J.G. Bai, A lead-free, low-temperature sintering die-attach technique for high-performance and high-temperature packaging, IEEE Cpmt Conference on High Density Microsystem Design & Packaging & Component Failure Analysis, (2004)

  23. K.S. Siow, Mechanical properties of nano-silver joints as die attach materials. J. Alloy. Compd. 514(2), 6–19 (2011)

    Google Scholar 

  24. Y.T. Su, G.C. Fu, C.Q. Liu, C.Y. Liu, X. Long, Fatigue crack evolution and effect analysis of Ag sintering die-attachment in SiC power devices under power cycling based on phase-field simulation. Microelectron. Reliab. (2021). https://doi.org/10.1016/j.microrel.2021.114244

    Article  Google Scholar 

  25. J. Heilmann, I. Nikitin, U. Zschenderlein, D. May, K. Pressel, B. Wunderle, Reliability experiments of sintered silver based interconnections by accelerated isothermal bending tests. Microelectron. Reliab. 74, 136–146 (2017)

    CAS  Google Scholar 

  26. X. Long, B. Hu, Y.H. Feng, C. Chang, M.Y. Li, Correlation of microstructure and constitutive behaviour of sintered silver particles via nanoindentation - sciencedirect. Int. J. Mech. Sci. 161–162, 105020 (2019)

    Google Scholar 

  27. C.T. Chen, C.Y. Choe, D.J. Kim, Z. Zhang, X. Long, F.S. Wu, K. Suganuma, Effect of oxygen on microstructural coarsening behaviors and mechanical properties of Ag sinter paste during high-temperature storage from macro to micro. J. Alloy. Compd. 834, 155173 (2020)

    CAS  Google Scholar 

  28. C.T. Chen, S. Nagao, K. Suganuma, J.T. Jiu, T. Sugahara, H. Zhang, T. Iwashige, K. Sugiura, K. Tsuruta, Macroscale and microscale fracture toughness of microporous sintered Ag for applications in power electronic devices. Acta Mater. 129, 41–51 (2017)

    CAS  Google Scholar 

  29. A.H. Almasri, G.Z. Voyiadjis, Nano-indentation in FCC metals: experimental study. Acta Mech. 209(1), 1–9 (2010)

    Google Scholar 

  30. R.W. Hertzberg, R.P. Vinci, J.L. Hertzberg, Deformation and fracture mechanics of engineering materials. General & introductory materials science, 5th edn. (Wiiley, Hoboken, 2012), p. 784

    Google Scholar 

  31. P.A. Thornton, V.J. Colangelo, Variation of mechanical properties in large steel forgings. Metall. Trans. B 7(3), 425 (1976)

    Google Scholar 

  32. G. Chen, Z.S. Zhang, Y.H. Mei, X. Li, D.J. Yu, L. Wang, X. Chen, Applying viscoplastic constitutive models to predict ratcheting behavior of sintered nanosilver lap-shear joint. Mech. Mater. 72, 61–71 (2014)

    Google Scholar 

  33. K.L. Anand, An internal variable constitutive model for hot working of metals. Int. J. Plast. 5(2), 95–130 (1989)

    Google Scholar 

  34. X. Long, X. He, Y. Yao, An improved unified creep-plasticity model for SnAgCu solder under a wide range of strain rates. J. Mater. Sci. 52(10), 6120–6137 (2017)

    CAS  Google Scholar 

  35. Y.T. Su, G.C. Fu, C.Q. Liu, K. Zhang, L.G. Zhao, C.Y. Liu, A.L. Liu, J.N. Song, Thermo-elasto-plastic phase-field modelling of mechanical behaviours of sintered nano-silver with randomly distributed micro-pores. Comput. Methods Appl. Mechan. Eng. 378, 113729 (2021)

    Google Scholar 

  36. P. Gadaud, V. Caccuri, D. Bertheau, J. Carr, X. Milhet, Ageing sintered silver: Relationship between tensile behavior, mechanical properties and the nanoporous structure evolution. Mater. Sci. Eng. A 669, 379–386 (2016)

    CAS  Google Scholar 

  37. E. Ide, S. Angata, A. Hirose, K.F. Kobayashi, Metal–metal bonding process using Ag metallo-organic nanoparticles. Acta Mater. 53(8), 2385–2393 (2005)

    CAS  Google Scholar 

  38. J.F. Li, C.M. Johnson, C. Buttay, W. Sabbah, S. Azzopardi, Bonding strength of multiple SiC die attachment prepared by sintering of Ag nanoparticles. J. Mater. Process. Technol. 215(1), 299–308 (2015)

    CAS  Google Scholar 

  39. D.J. Yu, C. Xu, C. Gang, G.Q. Lu, Z.Q. Wang, Applying Anand model to low-temperature sintered nanoscale silver paste chip attachment. Mater. Des. 30(10), 4574–4579 (2009)

    CAS  Google Scholar 

  40. W. Tao, C. Gang, Y. Wang, C. Xu, G.Q. Lu, Uniaxial ratcheting and fatigue behaviors of low-temperature sintered nano-scale silver paste at room and high temperatures. Mater. Sci. Eng. A 527(24–25), 6714–6722 (2010)

    Google Scholar 

  41. C. Chen, C. Choe, D. Kim, K. Suganuma, Lifetime prediction of a SiC power module by micron/submicron Ag sinter joining based on fatigue, creep and thermal properties from room temperature to high temperature. J. Electron. Mater. 50, 687–698 (2020)

    Google Scholar 

  42. K.S. Siow, A.A.O. Tay, P. Oruganti, Mechanical properties of nanocrystalline copper and nickel. Mater. Sci. Technol. 20(3), 285–294 (2004)

    CAS  Google Scholar 

  43. S.R. Agnew, B.R. Elliott, C.J. Youngdahl, K.J. Hemker, J.R. Weertman, Microstructure and mechanical behavior of nanocrystalline metals. Mater. Sci. Eng. A 285(1–2), 391–396 (2000)

    Google Scholar 

  44. P.G. Sanders, J.A. Eastman, J.R. Weertman, Elastic and tensile behavior of nanocrystalline copper and palladium. Acta Mater. 45(10), 4019–4025 (1997)

    CAS  Google Scholar 

  45. A. Bachmaier, A. Hohenwarter, R. Pippan, New procedure to generate stable nanocrystallites by severe plastic deformation. Scripta Mater. 61(11), 1016–1019 (2009)

    CAS  Google Scholar 

  46. T. Herboth, M. Guenther, A. Fix, J. Wilde, Failure mechanisms of sintered silver interconnections for power electronic applications, in 2013 IEEE 63rd Electronic Components and Technology Conference (2013)

  47. I. Nikitin, K. Pressel, Mechanical properties of porous silver materials depending on sintering parameters, in 20th International Workshop on Thermal Investigations of ICs and Systems (2014)

  48. J.G. Bai, Z.Z. Zhang, J.N. Calata, G.Q. Lu, Characterization of low-temperature sintered nanoscale silver paste for attaching semiconductor devices, in High Density Microsystem Design and Packaging and Component Failure Analysis (2005)

  49. T.G. Lei, J. Calata, S.F. Luo, G.Q. Lu, X. Chen, Low-temperature sintering of nanoscale silver paste for large-area joints in power electronics modules. Key Eng. Mater. 353–358(4), 2948–2953 (2007)

    CAS  Google Scholar 

  50. J.G. Bai, Z.Z. Zhang, J.N. Calata, G.Q. Lu, Low-temperature sintered nanoscale silver as a novel semiconductor device-metallized substrate interconnect material. IEEE Trans. Compon. Packag. Technol. 29(3), 589–593 (2006)

    CAS  Google Scholar 

  51. C. Xu, L. Rong, K. Qi, G.Q. Lu, Tensile behaviors and ratcheting effects of partially sintered chip-attachment films of a nanoscale silver paste. J. Electron. Mater. 37(10), 1574–1579 (2008)

    Google Scholar 

  52. G. Chen, X. Zhao, Constitutive modelling on the whole-life uniaxial ratcheting behavior of sintered nano-scale silver paste at room and high temperatures. Microelectron. Reliab. 80, 47–54 (2018)

    CAS  Google Scholar 

  53. X. Long, W. Tang, J. Liu, X. Lu, C. Zhou, W. Xia, Y. Wu, Estimating the constitutive behaviour of sintered silver nanoparticles by nanoindentation, International Conference on Electronic Packaging Technology, (2018), pp. 466-471

  54. X. Long, C. Du, Z. Li, H. Guo, Y. Yao, X. Lu, X. Hu, L. Ye, J. Liu, Finite element analysis to the constitutive behavior of sintered silver nanoparticles under nanoindentation. Int. J. Appl. Mech. (2019). https://doi.org/10.1142/S1758825118501107

    Article  Google Scholar 

  55. S.A. Paknejad, S.H. Mannan, Review of silver nanoparticle based die attach materials for high power/temperature applications. Microelectron. Reliab. 70, 1–11 (2017)

    CAS  Google Scholar 

  56. Z. Zhang, C.T. Chen, A. Suetake, M.C. Hsieh, A. Iwaki, K. Suganuma, Pressureless and low-temperature sinter-joining on bare Si, SiC and GaN by a Ag flake paste. Scripta Materialia 198, 113833 (2021)

    CAS  Google Scholar 

  57. S. Sakamoto, K. Suganuma, Thermo mechanical reliability of low-temperature low-pressure die bonding using thin Ag flake pastes, in 7th International Conference on Integrated Power Electronics Systems (2012)

  58. Y.H. Mei, Z. Wang, K.S. Siow, Reliability and failure mechanisms of sintered silver as die attach joint: materials, processes, equipment, and reliability, in Die-Attach Materials for High Temperature Applications in Microelectronics Packaging (2019), pp. 125–150

  59. H.G. Zheng, D. Berry, J.N. Calata, K.D.T. Ngo, S.S. Luo, G.Q. Lu, Low-pressure joining of large-area devices on copper using nanosilver paste. IEEE Trans. Compon. Packag. Manuf. Technol. 3(6), 915–922 (2013)

    CAS  Google Scholar 

  60. T.G. Lei, J.N. Calata, G.Q. Lu, X. Chen, S. Luo, Low-temperature sintering of nanoscale silver paste for attaching large-area (ï¼ 100mm2) chips. IEEE Trans. Compon. Packag. Technol. 33(1), 98–104 (2010)

    CAS  Google Scholar 

  61. L.A. Navarro, X. Perpiñà, M. Vellvehi, X. Jordà, Silver nano-particles sintering process for the die-attach of power devices for high temperature applications. Ingeniería Mecánica Tecnología Y Desarrollo 4(3), 97–102 (2012)

    Google Scholar 

  62. R. Khazaka, L. Mendizabal, D. Henry, Review on joint shear strength of nano-silver paste and its long-term high temperature reliability. J. Electron. Mater. 43(7), 2459–2466 (2014)

    CAS  Google Scholar 

  63. G.S. Zou, J.F. Yan, F.W. Mu, A.P. Wu, J.L. Ren, A.M. Hu, Low temperature bonding of Cu metal through sintering of Ag nanoparticles for high temperature electronic application. Open Surf. Sci. J. 3(1), 70–75 (2011)

    CAS  Google Scholar 

  64. T. Wang, X. Chen, G.Q. Lu, G.Y. Lei, Low-temperature sintering with nano-silver paste in die-attached interconnection. J. Electron. Mater. 36(10), 1333–1340 (2007)

    CAS  Google Scholar 

  65. M.Y. Wang, Y.H. Mei, X. Li, G.Q. Lu, Relationship between transient thermal impedance and shear strength of pressureless sintered silver as die attachment for power devices, in International Conference on Electronics Packaging and iMAPS All Asia Conference (2015), pp. 559–564

  66. S.A. Paknejad, A. Mansourian, J. Greenberg, K. Khtatba, S.H. Mannan, Microstructural evolution of sintered silver at elevated temperatures. Microelectron. Reliab. 63, 125–133 (2016)

    CAS  Google Scholar 

  67. H. Ma, J.C. Suhling, A review of mechanical properties of lead-free solders for electronic packaging. J. Mater. Sci. 44(5), 1141–1158 (2009)

    CAS  Google Scholar 

  68. X. Li, G. Chen, L. Wang, Y.H. Mei, X. Chen, G.Q. Lu, Creep properties of low-temperature sintered nano-silver lap shear joints. Mater. Sci. Eng. A 579(1), 108–113 (2013)

    CAS  Google Scholar 

  69. Y.C. Lin, Y.C. Xia, X.S. Ma, Y.Q. Jiang, M.S. Chen, High-temperature creep behavior of Al–Cu–Mg alloy. Mater. Sci. Eng. A 550(30), 125–130 (2012)

    CAS  Google Scholar 

  70. Y.C. Lin, Y.C. Xia, Y.Q. Jiang, L.T. Li, Precipitation in Al–Cu–Mg alloy during creep exposure. Mater. Sci. Eng. A 556(30), 796–800 (2012)

    CAS  Google Scholar 

  71. Y.C. Lin, Y.C. Xia, M.S. Chen, Y.Q. Jiang, L.T. Li, Modeling the creep behavior of 2024-T3 Al alloy. Comput. Mater. Sci. 67, 243–248 (2013)

    CAS  Google Scholar 

  72. F. Garofalo, D.B. Butrymowicz, Fundamentals of creep and creep-rupture in metals. Phys. Today 19(5), 100–102 (1966)

    Google Scholar 

  73. Y.H. Pao, S. Badgley, E. Jih, R. Govila, J. Browning, Constitutive behavior and low cycle thermal fatigue of 97Sn3Cu solder joints. J. Electron. Packag. 115(2), 147–152 (1993)

    Google Scholar 

  74. J.E. Dorn, Some fundamental experiments on high temperature creep. J. Mech. Phys. Solids 3(2), 85–116 (1955)

    Google Scholar 

  75. Z.G. Chen, Y.W. Shi, Z.D. Xia, Constitutive relations on creep for SnAgCuRE lead-free solder joints. J. Electron. Mater. 33(9), 964–971 (2004)

    CAS  Google Scholar 

  76. R.W. Evans, B. Wilshire, Creep of Metals and Alloys (The Institute of Metals, UK, 1985)

    Google Scholar 

  77. G. Chen, X.H. Sun, P. Nie, Y.H. Mei, G.Q. Lu, C. Xu, High-temperature creep behavior of low-temperature-sintered nano-silver paste films. J. Electron. Mater. 41(4), 782–790 (2012)

    CAS  Google Scholar 

  78. X. Li, G. Chen, X. Chen, G.Q. Lu, L. Wang, Y.H. Mei, High temperature ratcheting behavior of nano-silver paste sintered lap shear joint under cyclic shear force. Microelectron. Reliab. 53(1), 174–181 (2013)

    CAS  Google Scholar 

  79. Y.S. Tan, X. Li, X. Chen, Fatigue and dwell-fatigue behavior of nano-silver sintered lap-shear joint at elevated temperature. Microelectron. Reliab. 54(3), 648–653 (2014)

    CAS  Google Scholar 

  80. G.Z. Kang, Q.H. Kan, J. Zhang, Y.F. Sun, Time-dependent ratchetting experiments of SS304 stainless steel. Int. J. Plast. 22(5), 858–894 (2006)

    CAS  Google Scholar 

  81. L. Yu, X. Chen, Y.Z. Wang, X. Li, Y.H. Mei, Influence of temperature and microstructure on the mechanical properties of sintered nanosilver joints. Mater. Sci. Eng. A 626, 390–399 (2015)

    Google Scholar 

  82. C. Weber, M. Hutter, S. Schmitz, K.D. Lang, Dependency of the porosity and the layer thickness on the reliability of Ag sintered joints during active power cycling, Electronic Components & Technology Conference, 2015

  83. L. Zhang, B. Zhao, B.K. Guo, Fatigue damage accumulation rule of notched specimen. Harbin Gongye Daxue Xuebao/J. Harbin Inst. Technol. 40(11), 1703–1706 (2008)

    Google Scholar 

  84. G. Chen, X. Zhao, Constitutive modelling on the whole-life uniaxial ratcheting behavior of sintered nano-scale silver paste at room and high temperatures. Microelectron. Reliab. 80, 47–54 (2018)

    CAS  Google Scholar 

  85. D. Krajcinovic, G.U. Fonseka, The continuous damage theory of brittle materials, part 1: general theory. J. Appl. Mech. 48(4), 809–815 (1981)

    Google Scholar 

  86. J.L. Chaboche, P.M. Lesne, A non-linear continuous fatigue damage model. Fatigue Fracture Eng. Mater. Struct. 11(1), 1–17 (2010)

    Google Scholar 

  87. M. Kobayashi, N. Ohno, T. Igari, Ratchetting characteristics of 316FR steel at high temperature, part II: analysis of thermal ratchetting induced by spatial variation of temperature. Int. J. Plast. 14(4–5), 373–390 (1998)

    CAS  Google Scholar 

  88. D.H. Yu, G. Chen, W.W. Yu, D.M. Li, X. Chen, Visco-plastic constitutive modeling on Ohno–Wang kinematic hardening rule for uniaxial ratcheting behavior of Z2CND18.12 N steel. Int. J. Plast. 28(1), 88–101 (2012)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Shaanxi Province (Grant Nos. 2021KW-25), the Astronautics Supporting Technology Foundation of China (Grant No. 2019-HT-XG), and the Fundamental Research Funds for the Central Universities (Grant No. 3102018ZY015).

Author information

Authors and Affiliations

Authors

Contributions

XL: Conceptualization, supervision; writing—original draft; YG: writing—original draft, Investigation; YS: investigation; KSS: writing—review & editing, CC: Writing—review & editing.

Corresponding author

Correspondence to Xu Long.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interest or personal relationships that could have appeared to influence the work reported in this paper.

Consent for publication

The authors declare that this manuscript has not been published previously and is not under consideration for publication elsewhere.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, X., Guo, Y., Su, Y. et al. Constitutive, creep, and fatigue behavior of sintered Ag for finite element simulation of mechanical reliability: a critical review. J Mater Sci: Mater Electron 33, 2293–2309 (2022). https://doi.org/10.1007/s10854-021-07474-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07474-1

Navigation