Skip to main content
Log in

Spin-dependent electron transport analysis of benzyl alcohol and p-cresol based single molecular junction: a DFT-NEGF approach

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A single molecular junction can act as spintronic device when a molecule coupled with magnetic electrodes. Various analyses have been done to understand the spin transport properties of single molecular junction to develop highly efficient spintronic devices. The structure of a molecule plays a crucial role in spin transport properties of such molecular junction. In this paper, we explored the spin-dependent electron transport properties of functional isomers namely benzyl alcohol and p-cresol. To understand the spin-dependent transport properties of these molecules, we have anchored it with nickel electrodes. The Density Functional Theory (DFT) with Non-Equilibrium Green’s Function (NEGF) was implemented to calculate Density of States (DOS), transmission spectrum, and IV characteristic of these molecular junctions in parallel and antiparallel configurations. The spin filter efficiency and magnetoresistance percentage were calculated using the current value at various bias ranges. From the spin filter efficiency, we found that the down-spin propagates in antiparallel configuration of both benzyl alcohol and p-cresol molecular junction. Moreover, we observed a negative magneto resistance at higher bias which may due to the spin mixing and interface states of the molecular junction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to technical or time limitations.

References

  1. C. Jia, X. Guo, Chem. Soc. Rev. 42, 5642 (2013)

    Article  CAS  Google Scholar 

  2. A.M. Souza, I. Rungger, U. Schwingenschlögl, S. Sanvito, Nanoscale 7, 19231 (2015)

    Article  CAS  Google Scholar 

  3. M. Kaur, R.S. Sawhney, D. Engles, J. Mol. Graph. Model. 71, 184 (2017)

    Article  CAS  Google Scholar 

  4. C. Joachim, J.K. Gimzewski, A. Aviram, Nature 408, 541 (2000)

    Article  CAS  Google Scholar 

  5. W. Liang, M.P. Shores, M. Bockrath, J.R. Long, H. Park, Nature 417, 725 (2002)

    Article  CAS  Google Scholar 

  6. M.A. Reed, C. Zhou, C.J. Muller, T.P. Burgin, J.M. Tour, Science 278, 252 (1997)

    Article  CAS  Google Scholar 

  7. M. Butts, A. DeHon, S.C. Goldstein, Molecular electronics: devices, systems and tools for gigagate, gigabit chips, 433–440, (2003)

  8. J. Zhang, K.L. Yao, Comput. Mater. Sci. 133, 93 (2017)

    Article  CAS  Google Scholar 

  9. P. Zhao, D.S. Liu, G. Chen, Org. Electron. Phys. Mater. Appl. 36, 160 (2016)

    CAS  Google Scholar 

  10. P. Tyagi, E. Friebe, J. Magn. Magn. Mater. 453, 186 (2018)

    Article  CAS  Google Scholar 

  11. J.J. Baldoví, S. Cardona-Serra, A. Gaita-Ariño, E. Coronado, Adv. Inorg. Chem 69, 213–249 (2017)

    Article  Google Scholar 

  12. A. Aadhityan, C.Preferencial Kala, D. John, Thiruvadigal, Appl. Surf. Sci. 418, 393 (2017)

    Article  CAS  Google Scholar 

  13. S. Caliskan, A. Laref, Phys. Chem. Chem. Phys. 16, 13191 (2014)

    Article  CAS  Google Scholar 

  14. S. Koley, S. Sen, S. Saha, S. Chakrabarti, Phys. Chem. Chem. Phys. 18, 14376 (2016)

    Article  CAS  Google Scholar 

  15. Y. Song, Y. Su, P. Zhao, G.P. Zhang, C.K. Wang, G. Chen, Org. Electron. Phys. Mater. Appl. 59, 113 (2018)

    CAS  Google Scholar 

  16. S. Sen, Chem. Phys. 491, 126 (2017)

    Article  CAS  Google Scholar 

  17. J.R. Petta, S.K. Slater, D.C. Ralph, Phys. Rev. Lett. 93, 136601 (2004)

    Article  CAS  Google Scholar 

  18. E.G. Emberly, G. Kirczenow, Chem. Phys. 281, 311 (2002)

    Article  CAS  Google Scholar 

  19. D. Waldron, P. Haney, B. Larade, A. MacDonald, H. Guo, Phys. Rev. Lett. 96, 166804 (2006)

    Article  Google Scholar 

  20. P. Tyagi, C. Riso, U. Amir, C. Rojas-Dotti, J. Martínez-Lillo, RSC Adv. 10, 13006 (2020)

    Article  CAS  Google Scholar 

  21. W. Ma, W. Wang, Y. Huang, T. Zhou, S. Wang, Comput. Theor. Chem. 1198, 113170 (2021)

    Article  CAS  Google Scholar 

  22. S. Yang, S. Li, J.C. Ren, C.J. Butch, W. Liu, Chem. Mater. 32, 9609 (2020)

    Article  CAS  Google Scholar 

  23. S. Li, Y. Wang, Y. Wang, S. Sanvito, S. Hou, J. Phys. Chem. C 125, 6945 (2021)

    Article  CAS  Google Scholar 

  24. T. Stuyver, S. Fias, F. De Proft, P. Geerlings, Y. Tsuji, R. Hoffmann, J. Chem. Phys. 146, 092310 (2017)

    Article  Google Scholar 

  25. A. Aadhityan, C.P. Kala, D.J. Thiruvadigal, Appl. Surf. Sci. 494, 561 (2019)

    Article  CAS  Google Scholar 

  26. J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, D. Sánchez-Portal, J. Phys. Condens. Matter. 14, 2745 (2002)

    Article  CAS  Google Scholar 

  27. K. Stokbro, J. Taylor, M. Brandbyge, H. Guo, Lect. Notes Phys. 680, 117 (2006)

    Article  Google Scholar 

  28. M. Brandbyge, J.L. Mozos, P. Ordejón, J. Taylor, K. Stokbro, Phys. Rev. B 65, 1654011 (2002)

    Article  Google Scholar 

  29. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  CAS  Google Scholar 

  30. A. Kole, K. Radhakrishnan, RSC Adv. 7, 8474 (2017)

    Article  CAS  Google Scholar 

  31. M. Kaur, R.S. Sawhney, D. Engles, J. Mol. Model. 23, 221 (2017)

    Article  Google Scholar 

  32. Y. Meir, N.S. Wingreen, Phys. Rev. Lett. 68, 2512 (1992)

    Article  CAS  Google Scholar 

  33. F. Zu, Z. Liu, K. Yao, G. Gao, H. Fu, S. Zhu, Y. Ni, L. Peng, Sci. Rep. 4, 4838 (2014)

    Article  CAS  Google Scholar 

  34. QuantumATK version 2020 Synopsys QuantumATK. https://www.synopsys.com/silicon/quantumatk.html

  35. S. Caliskan, A. Laref, Sci. Rep. 4, 7363 (2014)

    Article  CAS  Google Scholar 

  36. W.M. Haynes, D.R. Lide, T.J. Bruno, CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data (C.R.C. Press, Boca Raton, 1995)

    Google Scholar 

  37. G.C. Hu, J.H. Wei, S.J. Xie, Appl. Phys. Lett. 91, 142115 (2007)

    Article  Google Scholar 

  38. Y. Zhang, X.H. Yan, Y.D. Guo, Y. Xiao, Appl. Phys. Lett. 111, 072405 (2017)

    Article  Google Scholar 

  39. G. D. Zhao, L. M. Li, Y. Wang, A. Stroppa, J. H. Zhang, and W. Ren, RSC Adv. 8, 41587 (2018).

  40. D. Li, Y.J. Dappe, A. Smogunov, J. Phys. Condens. Matter. 31, 405301 (2019)

    Article  CAS  Google Scholar 

  41. C. Yu, Y. Miao, S. Qiu, Y. Cui, G. He, G. Zhang, C. Wang, G. Hu, J. Phys. D 51, 345302 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support for this project from DST-FIST, Government of India (Ref. No. SR/FST/PSI-155/2010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Preferencial Kala.

Ethics declarations

Conflict of  interest

The authors declare no competing interest for this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arivazhagan, A., Jasmine, J.M., Rajalakshmi Mohanraj, H. et al. Spin-dependent electron transport analysis of benzyl alcohol and p-cresol based single molecular junction: a DFT-NEGF approach. J Mater Sci: Mater Electron 33, 9490–9497 (2022). https://doi.org/10.1007/s10854-021-07468-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07468-z

Navigation