Skip to main content
Log in

Ba2(Y,Sc)NbO6:Bi3+ solid solution nanocrystals: synthesis, photoluminescence properties, and white LEDs application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the recent years, luminescent phosphor materials have contributed much to reduce the serious environmental problems such as environmental pollution, greenhouse effect, and energy crisis, but most of them commercially used for fabricating white LEDs are rare earth (RE) ions doped materials. Here, the non-RE Bi3+-doped Ba2(Y,Sc)NbO6 solid solution nanocrystals are prepared using a high temperature solid state route followed by a ball milling and griddle selection. Our experiments show that when the Y3+ ions are replaced by the Sc3+ ions, the obtained solid solution nanocrystals show a shift of X-ray reflection positions to higher angle, and the emission peaks from blue to blue-green. At the same time, a 1.35 time of PL intensity enhancement under 365 nm excitation is achieved in the Ba2(Y0.58,Sc0.4)NbO6:0.02Bi sample when compared to the Ba2Y0.98NbO6:0.02Bi sample. In addition, this optimal sample shows the quantum efficiency of 76% and good thermal stability with T50% value of 205 °C. By depositing the Ba2(Y0.58,Sc0.4)NbO6:0.02Bi and commercial red Sr2Si5N8:Eu2+ phosphors on a 365 nm UV LED chip at a driving current of 30 mA, a white LED device, with a CIE coordinates at (0.364, 0.379), a high color rendering index of 76.8 and luminous efficiency of 67 lm, and a low color temperature of 3469 K, is achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Cacciotti, G. Bianco, G. Pezzotti, Gusmano, Chem. Eng. J. 166, 751–764 (2011)

    CAS  Google Scholar 

  2. V. Bachmann, A. Meijerink, C. Ronda, J. Lumin. 129, 1341–1346 (2009)

    CAS  Google Scholar 

  3. G. Anjaiah, S.K. Nay Rasool, P. Kistaiah, J. Lumin 159, 110 (2015)

    CAS  Google Scholar 

  4. Q. Hu, Z. Li, Z. Tan, H. Song, C. Ge, G. Niu, J. Han, J. Tang, Adv. Opt. Mater. 6, 1700864 (2018)

    Google Scholar 

  5. S. Liu, A. Fossati, D. Serrano, A. Tallaire, A. Ferrier, P. Goldner, ACS Nano 14(8), 9953 (2020)

    CAS  Google Scholar 

  6. A. Wang, Y.-L. Hou, F. Kang, F. Lyu, Y. Xiong, W.-C. Chen, C.-S. Lee, Z. Xu, A.L. Rogach, J. Lu, Y.Y. Li, J. Mater. Chem. C 7, 2207–2211 (2019)

    CAS  Google Scholar 

  7. L. Ruiyi, L. Zaijun, S. Xiulan, J. Jan, L. Lin, G. Zhiguo, W. Guangli, Chem. Eng. J. 382, 122992 (2020)

    CAS  Google Scholar 

  8. F. Saraci, V. Quezada-Novoa, PRDAJ Howarth, Chem. Soc. Rev. 49, 7949–7977 (2020)

    CAS  Google Scholar 

  9. X. Chen, Q. Chen, F. Guo, X. Liu, Z. Zhao, J. Li, L. He, F. Sun, Hydrometallurgy 196, 105423 (2020)

    CAS  Google Scholar 

  10. Z. Gao, F. Fu, L. Niu, M. Jin, X. Wang, J. Rare Earth. (2021). https://doi.org/10.1016/j.jre.2021.08.021

    Article  Google Scholar 

  11. F. Kang, G. Sun, P. Boutinaud, H. Wu, F.-X. Ma, J. Lu, J. Gan, H. Bian, F. Gao, S. Xiao, Chem. Eng. J. 403, 126099 (2021)

    CAS  Google Scholar 

  12. M.G. Brik, A.M. Srivastava, ECS J. Solid State Sci. 7, R3079 (2018)

    CAS  Google Scholar 

  13. A.B. Abou Hammad, A.M. Mansour, F. Cao, A.M. El Nahrawy, ECS J. Solid State Sci. (2021). https://doi.org/10.1149/2162-8777/ac31d2

    Article  Google Scholar 

  14. S. Adachi, J. Lumin. 223, 117217 (2020)

    CAS  Google Scholar 

  15. F. Kang, G. Sun, P. Boutinaud, F. Gao, Z. Wang, J. Lu, Y.Y. Li, S. Xiao, J. Mater. Chem. C 7, 9865 (2019)

    CAS  Google Scholar 

  16. C. Zhou, C. Jiang, J. Zhao, P. Zhan, X. Tang, D. Jin, X. Wang, Bull. Mater. Sci. 44, 32 (2021)

    CAS  Google Scholar 

  17. D. Zhao, Y.-N. Li, R.-J. Zhang, B.-Z. Liu, Q.-X. Yao, ACS Sustain. Chem. Eng. 9(22), 7569 (2021)

    CAS  Google Scholar 

  18. F. Kang, M. Peng, D.Y. Lei, Q. Zhang, Chem. Mater. 28(21), 7807 (2016)

    CAS  Google Scholar 

  19. Z. Zhou, Y. Zhong, M. Xia, N. Zhou, B. Lei, J. Wang, F. Wu, J. Mater. Chem. C 6, 8914 (2018)

    CAS  Google Scholar 

  20. Y. Wei, G. Xing, K. Liu, G. Li, P. Dang, S. Liang, M. Liu, Z. Cheng, D. Jin, J Lin, Light: Sci. Appl. 8, 15 (2019)

    Google Scholar 

  21. F. Kang, M. Peng, X. Yang, G. Dong, G. Nie et al., J. Mater. Chem. C 2, 6068 (2014)

    CAS  Google Scholar 

  22. H. Zhang, D. Yuan, X. Mi, X. Liu, J. Lin, Dalton Trans. 49, 8949 (2020)

    CAS  Google Scholar 

  23. M.N. Magomedov, Solid State Commun. 322, 114060 (2020)

    CAS  Google Scholar 

  24. S.L. Tonquesse, M. Pasturel, V. Demange, A. Tayal, P.L. Solari, C. Prestipino, J. Nucl. Mater. 526, 151772 (2019)

    Google Scholar 

  25. C.-I. Su, W.-C. Shih, C.-M. Wang, Y.-S. Liu, S.-P. Wu, Fibers Polym. 2013, 14 (1808)

    Google Scholar 

  26. Y. Lu, S. Zhang, J. Yin, C. Bai, J. Zhang, Y. Li, Y. Yang, Z. Ge, M. Zhang, L. Wei, M. Ma, Y. Ma, Y. Chen, Carbon 124, 64 (2017)

    CAS  Google Scholar 

  27. N.N. Feng, S.W. Bai, C.L. Wang, G. Wu, G.Q. Zhang, J.G. Yang, Opt. Mater. 96, 109317 (2019)

    CAS  Google Scholar 

  28. T.R. Raman, Y.C. Ratnakaram, B.D.P. Raju, Optik 225, 165758 (2021)

    Google Scholar 

  29. F. Kang, H. Zhang, L. Wondraczek, X. Yang, Y. Zhang, D.Y. Lei, M. Peng, Chem. Mater. 28(8), 2692 (2016)

    CAS  Google Scholar 

  30. A.A. Babaryk, Y. Pérez, M. Martínez, M.E.G. Mosquera, M.H. Zehender, S.A. Svatek, E. Antolínc, P. Horcajada, J. Mater. Chem. C 9, 11358 (2021)

    CAS  Google Scholar 

  31. A. Bhatia, G. Hautier, T. Nilgianskul, A. Miglio, J. Su, H.J. Kim, K.H. Kim, S. Chen, G.-M. Rignanese, X. Gonze, J. Suntivich, Chem. Mater. 28(1), 30 (2016)

    CAS  Google Scholar 

  32. P. Dang, S. Liang, G. Li, H. Lian, M. Shang, J. Lin, J. Mater. Chem. C 6, 9990 (2018)

    CAS  Google Scholar 

  33. Z. Wang, Q. Fang, J. Li, B. Liu, Y. Liu, J. Mater. Sci. Technol. 34, 349 (2018)

    CAS  Google Scholar 

  34. J. Yang, J. Zhang, Z. Gao, M. Tao, P. Dang, Y. Wei, G. Li, Inorg. Chem. Front. 2019, 6 (2004)

    Google Scholar 

  35. B. Wang, Y. Liu, Z. Huang, M. Fang, X. Wu, Sci. Rep. 7, 18103 (2017)

    Google Scholar 

  36. F.W. Kang, M.Y. Peng, Q.Y. Zhang, J.R. Qiu, Chem-Eur J. 20, 11522 (2014)

    CAS  Google Scholar 

  37. G.C. Xing, Y.X. Feng, M. Pan, Y. Wei, G.G. Li, P.P. Dang, J. Mater. Chem. C 6, 13136 (2018)

    CAS  Google Scholar 

  38. C.Y. Wang, T. Takashi, O.M. ten Kate, M. Tansho, K. Deguchi, K. Takahash, ACS Appl. Mater. Interfaces 9, 22665 (2017)

    CAS  Google Scholar 

  39. J. Sokolnicki, J. Lumin. 134, 600 (2013)

    CAS  Google Scholar 

  40. J. Chen, N. Zhang, C. Guo, F. Pan, X. Zhou, H. Suo, X. Zhao, E.M. Goldys, ACS Appl. Mater. Interfaces 8, 20856 (2016)

    CAS  Google Scholar 

  41. M. Rajendran, S.K. Samal, S. Vaidyanathan, J. Alloy Compd. 815, 152631 (2020)

    CAS  Google Scholar 

  42. S. Devi, M. Dalal, J. Dalal, A. Hooda, A. Khatkar, V.B. Taxak, S.P. Khatkara, Ceram. Int. 45, 7397 (2019)

    CAS  Google Scholar 

  43. M. Li, H. Zhang, X. Zhang, J. Deng, Y. Liu, Z. Xia, B. Lei, Mater. Res. Bull. 108, 226 (2018)

    CAS  Google Scholar 

  44. X. Zhang, H. Zeng, Q. Su, J. Alloy Compd. 441, 259 (2017)

    Google Scholar 

  45. Y. Zhou, S. Zhang, X. Wang, H. Jiao, Inorg. Chem. 58, 4412 (2019)

    CAS  Google Scholar 

  46. W.U. Khan, L. Zhou, X. Li, W. Zhou, D. Khan, S.-I. Niaz, M. Wu, Chem. Eng. J. 410, 128455 (2021)

    Google Scholar 

  47. G. Zhou, X. Jiang, J. Zhao, M. Molokeev, Z. Lin, Q. Liu, Z. Xia, ACS. Appl. Mater. Interfaces 10, 24648 (2018)

    CAS  Google Scholar 

Download references

Acknowledgements

This work is funded by the Key R & D Project of Hebei Province 18214321, the Research Foundation of Hengshui University for High-level Talents 2019GC10 and 2021GC06, National Innovation and Entrepreneurship Training Program for College Students 202010101001, and 2018011002Z the science technology program of Hengshui city.

Author information

Authors and Affiliations

Authors

Contributions

The authors ZG and MJ contribute the experimental and theoretical ideas to this submission, and guide the authors FF and LN to measure the data, draw the figures and write the draft of this paper.

Corresponding authors

Correspondence to Zhihua Gao or M. Jin.

Ethics declarations

Conflict of interest

We declare here that we have no any compliance with ethical standards and/or conflict of interest on this work and have no any financial or personal relationships with other people and organizations that can affect this work. In addition, all the data generated during and/or analyzed during the current study can be open to the readers if necessary, they are true and reliable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Z., Fu, F., Niu, L. et al. Ba2(Y,Sc)NbO6:Bi3+ solid solution nanocrystals: synthesis, photoluminescence properties, and white LEDs application. J Mater Sci: Mater Electron 33, 2607–2618 (2022). https://doi.org/10.1007/s10854-021-07465-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07465-2

Navigation