Skip to main content

Advertisement

Log in

Engineered perovskite LaCoO3/rGO nanocomposites for asymmetrical electrochemical supercapacitor application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Here, we report the synthesis route of LaCoO3 and nanocomposite with reduced graphene oxide (rGO) via solvothermal approach. The study of structural phase, phase purity, surface oxidation states, morphological, and electrochemical properties of synthesized materials is performed via various techniques: X-ray diffraction, high-resolution transmission electron microscope, scanning electron microscope, and Potentiostat SP-150, etc. It is evident from the various results obtained that the oxygen vacancy and nanocomposite enhance the electrical conductivity and ion/electron transfer leading to fast charge storage mechanism that, in turn, significantly enhances the electrochemical performance. The electrode designed of pristine LaCoO3 delivered the specific capacitance of 225 F/g in comparison of nanocomposite LaCoO3/rGO electrode as 317 F/g at current density of 1.75 A/g and exhibited remarkable cycle life retention 95% and 96% after 1000 life charging discharging cycles, respectively. Furthermore, the designed asymmetric supercapacitor delivered the specific capacitance up to 38 F/g at current density of 2 A/g and held 76% retention after 5000 charging discharging cycles. The remarkable performance of nanocomposite materials indicates its propitious candidature for next-generation energy storage by overcoming the dependency on spinel-type structure material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. V. Rajendran, A.M.V. Mohan, M. Jayaraman, T. Nakagawa, All-printed, interdigitated, freestanding serpentine interconnects based flexible solid state supercapacitor for self powered wearable electronics. Nano Energy 65, 104055 (2019). https://doi.org/10.1016/j.nanoen.2019.104055

    Article  CAS  Google Scholar 

  2. J. Yang, X. Xiao, P. Chen, K. Zhu, K. Cheng, K. Ye, G. Wang, D. Cao, J. Yan, Creating oxygen-vacancies in MoO3-x nanobelts toward high volumetric energy-density asymmetric supercapacitors with long lifespan. Nano Energy 58, 455–465 (2019). https://doi.org/10.1016/j.nanoen.2019.01.071

    Article  CAS  Google Scholar 

  3. N. Zhang, D. Chen, F. Niu, S. Wang, L. Qin, Y. Huang, Enhanced visible light photocatalytic activity of Gd-doped BiFeO3 nanoparticles and mechanism insight. Sci. Rep. 6, 1–11 (2016). https://doi.org/10.1038/srep26467

    Article  CAS  Google Scholar 

  4. K.-C. Hoa, L.-Y. Lin, Supercapacitors, a review of electrode materials based on core-shell nanostructures for electrochemical supercapacitors Kuo-Chuan. J. Mater. Chem. (2019). https://doi.org/10.1039/C8TA11599K

    Article  Google Scholar 

  5. J. Zhu, H. Li, L. Zhong, P. Xiao, X. Xu, X. Yang, Z. Zhao, J. Li, Perovskite oxides: preparation, characterizations, and applications in heterogeneous catalysis. ACS Catal. (2014). https://doi.org/10.1021/cs500606g

    Article  Google Scholar 

  6. Y. Zhu, L. Peng, D. Chen, G. Yu, Intercalation pseudocapacitance in ultrathin VOPO4 nanosheets: toward high-rate alkali-ion-based electrochemical energy storage. Nano Lett. (2016). https://doi.org/10.1021/acs.nanolett.5b04610

    Article  Google Scholar 

  7. M. Liang, M. Zhao, H. Wang, J. Shen, X. Song, Enhanced cycling stability of hierarchical NiCo2S4@Ni(OH)2@PPy core–shell nanotube arrays for aqueous asymmetric supercapacitors. J. Mater. Chem. A Mater. Energy Sustain. 6, 2482–2493 (2018). https://doi.org/10.1039/C7TA10413H

    Article  CAS  Google Scholar 

  8. E. Lim, C. Jo, H. Kim, M.H. Kim, Y. Mun, J. Chun, Y. Ye, J. Hwang, K. Ha, K.C. Roh, K. Kang, S. Yoon, J. Lee, Facile synthesis of Nb2O5@carbon core À shell nanocrystals with controlled crystalline structure for high-power anodes in hybrid supercapacitors. ACS Nano 9, 7497–7505 (2015). https://doi.org/10.1021/acsnano.5b02601

    Article  CAS  Google Scholar 

  9. A. Eftekhari, The mechanism of ultrafast supercapacitors. J. Mater. Chem. A. 6, 2866–2876 (2018). https://doi.org/10.1039/c7ta10013b

    Article  CAS  Google Scholar 

  10. T.W. Chen, R. Ramachandran, S.M. Chen, N. Kavitha, K. Dinakaran, R. Kannan, G. Anushya, N. Bhuvana, T. Jeyapragasam, V. Mariyappan, S.D. Rani, S. Chitra, Developing low-cost, high performance, robust and sustainable perovskite electrocatalytic materials in the electrochemical sensors and energy sectors: “an overview.” Catalysts 10, 1–23 (2020). https://doi.org/10.3390/catal10080938

    Article  CAS  Google Scholar 

  11. Q. Hu, B. Yue, F. Yang, H. Shao, J. Wang, L. Ji, Y. Jia, Y. Wang, J. Liu, Facile synthesis and electrochemical properties of perovskite-type CeMnO3 nanofibers. ChemistrySelect 4, 11903–11912 (2019). https://doi.org/10.1002/slct.201903426

    Article  CAS  Google Scholar 

  12. P.M. Shafi, A.C. Bose, A. Vinu, Electrochemical material processing via continuous charge-discharge cycling: enhanced performance upon cycling for porous LaMnO3 perovskite supercapacitor electrodes. ChemElectroChem 5, 3723–3730 (2018). https://doi.org/10.1002/celc.201801053

    Article  CAS  Google Scholar 

  13. H. Tian, X. Lang, H. Nan, P. An, W. Zhang, X. Hu, J. Zhang, Nanosheet-assembled LaMnO3@NiCo2O4 nanoarchitecture growth on Ni foam for high power density supercapacitors. Electrochim. Acta. 318, 651–659 (2019). https://doi.org/10.1016/j.electacta.2019.06.133

    Article  CAS  Google Scholar 

  14. Y. Liu, J. Dinh, M.O. Tade, Z. Shao, Design of perovskite oxides as anion-intercalation-type electrodes for supercapacitors: cation leaching effect. ACS Appl. Mater. Interfaces. 8, 23774–23783 (2016). https://doi.org/10.1021/acsami.6b08634

    Article  CAS  Google Scholar 

  15. G. Guo, K. Ouyang, J. Yu, Y. Liu, S. Feng, M. Wei, Facile synthesis of LaCoO3 with a high oxygen vacancy concentration by the plasma etching technique for high-performance oxygen ion intercalation pseudocapacitors. ACS Appl. Energy Mater. 3, 300–308 (2020). https://doi.org/10.1021/acsaem.9b01558

    Article  CAS  Google Scholar 

  16. J.T. Mefford, W.G. Hardin, S. Dai, K.P. Johnston, K.J. Stevenson, Anion charge storage through oxygen intercalation in LaMnO3 perovskite pseudocapacitor electrodes. Nat. Mater. 13, 726–732 (2014). https://doi.org/10.1038/nmat4000

    Article  CAS  Google Scholar 

  17. X. Chen, J. Xu, Y. Xu, F. Luo, Y. Du, Rare earth double perovskites: a fertile soil in the field of perovskite oxides. Inorg. Chem. Front. 6, 2226–2238 (2019). https://doi.org/10.1039/c9qi00512a

    Article  CAS  Google Scholar 

  18. Z. Xu, Z. Li, C.M.B. Holt, X. Tan, H. Wang, B.S. Amirkhiz, T. Stephenson, D. Mitlin, Electrochemical supercapacitor electrodes from sponge-like graphene nanoarchitectures with ultrahigh power density. J. Phys. Chem. Lett. 3, 2928–2933 (2012). https://doi.org/10.1021/jz301207g

    Article  CAS  Google Scholar 

  19. R.P. Forslund, W.G. Hardin, X. Rong, A.M. Abakumov, D. Filimonov, C.T. Alexander, J.T. Mefford, H. Iyer, A.M. Kolpak, K.P. Johnston, K.J. Stevenson, Exceptional electrocatalytic oxygen evolution via tunable charge transfer interactions in La0.5Sr1.5Ni1−xFexO4±δ Ruddlesden-Popper oxides. Nat. Commun. 9, 1–11 (2018). https://doi.org/10.1038/s41467-018-05600-y

    Article  CAS  Google Scholar 

  20. G. Guo, K. Ouyang, J. Yu, Y. Liu, S. Feng, M. Wei, Facile synthesis of LaCoO3 with a high oxygen vacancy concentration by the plasma etching technique for high-performance oxygen ion intercalation pseudocapacitors. ACS Appl. Energy Mater. 3(1), 300–308 (2019). https://doi.org/10.1021/acsaem.9b01558

    Article  CAS  Google Scholar 

  21. K. Liang, N. Wang, M. Zhou, Z. Cao, T. Gu, Q. Zhang, X. Tang, W. Hu, B. Wei, Mesoporous LaNiO3/NiO nanostructured thin films for high-performance supercapacitors. J. Mater. Chem. A 1(34), 9730–9736 (2013). https://doi.org/10.1039/C3TA11723E

    Article  CAS  Google Scholar 

  22. W. Che, M. Wei, Z. Sang, Y. Ou, Y. Liu, J. Liu, Perovskite LaNiO3-δ oxide as an anion-intercalated pseudocapacitor electrode. J. Alloys Compd. 731, 381–388 (2018). https://doi.org/10.1016/j.jallcom.2017.10.027

    Article  CAS  Google Scholar 

  23. L. Hu, Y. Deng, K. Liang, X. Liu, W. Hu, LaNiO3/NiO hollow nanofibers with mesoporous wall: a significant improvement in NiO electrodes for supercapacitors. J. Solid State Electrochem. 19(3), 629–637 (2015). https://doi.org/10.1007/s10008-014-2641-6

    Article  CAS  Google Scholar 

  24. N. Arjun, G.T. Pan, T.C.K. Yang, The exploration of lanthanum based perovskites and their complementary electrolytes for the supercapacitor applications. Res. Phys. 7, 920–926 (2017). https://doi.org/10.1016/j.rinp.2017.02.013

    Article  Google Scholar 

  25. M.P. Harikrishnan, A.C. Bose. Perovskite oxide LaCoO3 electrode as high performance pseudocapacitor. In AIP Conference Proceedings, vol. 2082, no. 1. AIP Publishing LLC, (2019), p. 060001

  26. T. Shao, Y. Huihui, Z. Zhangjie, L. Tianhui, L. Ming, Z. Lei, Hollow spherical LaNiO3 supercapacitor electrode synthesized by a facile template-free method. Mater. Lett. 201, 122–124 (2017). https://doi.org/10.1016/j.matlet.2017.04.143

    Article  CAS  Google Scholar 

  27. G. George, S.L. Jackson, C.Q. Luo, D. Fang, D. Luo, D. Hu, J. Wen, Z. Luo, Effect of doping on the performance of high-crystalline SrMnO3 perovskite nanofibers as a supercapacitor electrode. Ceram. Int. 44(17), 21982–21992 (2018). https://doi.org/10.1016/j.ceramint.2018.08.313

    Article  CAS  Google Scholar 

  28. Y. Cao, B. Lin, Y. Sun, H. Yang, X. Zhang, Sr-doped lanthanum nickelate nanofibers for high energy density supercapacitors. Electrochim. Acta 174, 41–50 (2015). https://doi.org/10.1016/j.electacta.2015.05.131

    Article  CAS  Google Scholar 

  29. Y. Cao, B. Lin, Y. Sun, H. Yang, X. Zhang, Symmetric/asymmetric supercapacitor based on the perovskite-type lanthanum cobaltate nanofibers with Sr-substitution. Electrochim. Acta 178, 398–406 (2015). https://doi.org/10.1016/j.electacta.2015.08.033

    Article  CAS  Google Scholar 

  30. P. Liu, J. Liu, S. Cheng, W. Cai, F. Yu, Y. Zhang, P. Wu, M. Liu, A high-performance electrode for supercapacitors: silver nanoparticles grown on a porous perovskite-type material La0.7Sr0.3CoO3−δ substrate. Chem. Eng. J. 328, 1–10 (2017). https://doi.org/10.1016/j.cej.2017.06.150

    Article  CAS  Google Scholar 

  31. Y. Cao, J. Liang, X. Li, L. Yue, Q. Liu, S. Lu, A.M. Asiri, J. Hu, Y. Luo, X. Sun, Recent advances of perovskite oxides as electrode materials for supercapacitor. Chem. Commun. (2021). https://doi.org/10.1039/D0CC07970G

    Article  Google Scholar 

  32. N.S. Kumar, K.C.B. Naidu, A review on perovskite solar cells (PSCs), materials and applications. J. Materiomics (2021). https://doi.org/10.1016/j.jmat.2021.04.002

    Article  Google Scholar 

  33. X. Huang, G. Zhao, G. Wang, J.T.S. Irvine, Synthesis and applications of nanoporous perovskite metal oxides. Chem. Sci. 9, 3623–3637 (2018). https://doi.org/10.1039/c7sc03920d

    Article  CAS  Google Scholar 

  34. E. Kostopoulou, E. Kymakis, Stratakis, perovskite nanostructures for photovoltaic and energy storage devices. J. Mater. Chem. A. 6, 9765–9798 (2018). https://doi.org/10.1039/c8ta01964a

    Article  CAS  Google Scholar 

  35. J. Wang, Y. Gao, F. Ciucci, Mechanochemical coupling of MoS2 and perovskites for hydrogen generation. ACS Appl. Energy Mater. 1, 6409–6416 (2018). https://doi.org/10.1021/acsaem.8b01365

    Article  CAS  Google Scholar 

  36. J. Chen, J. Wu, Y. Liu, X. Hu, D. Geng, Assemblage of perovskite LaNiO3 connected with in situ grown nitrogen-doped carbon nanotubes as high-performance electrocatalyst for oxygen evolution reaction. Phys. Status Solidi Appl. Mater. Sci. 215, 1–7 (2018). https://doi.org/10.1002/pssa.201800380

    Article  CAS  Google Scholar 

  37. T. Lv, M. Wu, M. Guo, Q. Liu, L. Jia, Self-assembly photocatalytic reduction synthesis of graphene-encapusulated LaNiO3 nanoreactor with high efficiency and stability for photocatalytic water splitting to hydrogen. Chem. Eng. J. 356, 580–591 (2019). https://doi.org/10.1016/j.cej.2018.09.031

    Article  CAS  Google Scholar 

  38. J. Hu, Q. Liu, Z. Shi, L. Zhang, H. Huang, LaNiO3-nanorod/graphene composite as an efficient bi-functional catalyst for zinc-air batteries. RSC Adv. 6, 86386–86394 (2016). https://doi.org/10.1039/c6ra16610e

    Article  CAS  Google Scholar 

  39. W. Wang, Y. Liu, Y.J. Zhong, L. Wang, W. Zhou, S. Wang, M.O. Tadé, Z. Shao, Rational design of LaNiO3/carbon composites as outstanding platinum-free photocathodes in dye-sensitized solar cells with enhanced catalysis for the triiodide reduction reaction. Sol. RRL. 1, 1–9 (2017). https://doi.org/10.1002/solr.201700074

    Article  CAS  Google Scholar 

  40. Z.A. Elsiddig, D. Wang, H. Xu, W. Zhang, T. Zhang, P. Zhang, W. Tian, Z. Sun, J. Chen, Three-dimensional nitrogen-doped graphene wrapped LaMnO3 nanocomposites as high-performance supercapacitor electrodes. J. Alloys Compd. (2018). https://doi.org/10.1016/j.jallcom.2017.12.368

    Article  Google Scholar 

  41. X. Ren, H. Yang, S. Gen, J. Zhou, T. Yang, X. Zhang, Z. Cheng, S. Sun, Controlled growth of LaFeO3 nanoparticles on reduced graphene oxide for highly efficient photocatalysis. Nanoscale 8, 752–756 (2016). https://doi.org/10.1039/c5nr06338h

    Article  CAS  Google Scholar 

  42. B. Zhang, C. Yu, Z. Li, Enhancing the electrochemical properties of LaCoO3 by Sr-doping, rGO-compounding with rational design for energy storage device. Nanoscale Res. Lett. (2020). https://doi.org/10.1186/s11671-020-03411-z

    Article  Google Scholar 

  43. C.F. Holder, R.E. Schaak, Tutorial on powder x-ray diffraction for characterizing nanoscale materials. ACS Nano 13, 7359–7365 (2019). https://doi.org/10.1021/acsnano.9b05157

    Article  CAS  Google Scholar 

  44. N.S. Kumar, R.P. Suvarna, K.C.B. Naidu, Sol-gel synthesized and microwave heated Pb0.8-yLayCo0.2TiO3 (y= 0.2–0.8) nanoparticles: structural, morphological and dielectric properties. Ceram. Int. 44(15), 18189–18199 (2018). https://doi.org/10.1016/j.ceramint.2018.07.027

    Article  CAS  Google Scholar 

  45. N.S. Kumar, R.P. Suvarna, K.C.B. Naidu, Microwave heated lead cobalt titanate nanoparticles synthesized by sol-gel technique: structural, morphological, dielectric, impedance and ferroelectric properties. Mater. Sci. Eng., B 242, 23–30 (2019). https://doi.org/10.1016/j.mseb.2019.03.005

    Article  CAS  Google Scholar 

  46. K.C.B. Naidu, V.N. Reddy, T.S. Sarmash, D. Kothandan, T. Subbarao, N.S. Kumar, Structural, morphological, electrical, impedance and ferroelectric properties of BaO-ZnO-TiO2 ternary system. J. Aust. Ceram. Soc. 55(1), 201–218 (2019). https://doi.org/10.1007/s41779-018-0225-0

    Article  CAS  Google Scholar 

  47. S.I. Zabinsky, J.J. Rehr, A. Ankudinov, R.C. Albers, M.J. Eller, Multiple-scattering calculations of x-ray-absorption spectra. Phys. Rev. B. 52, 2995–3009 (1995). https://doi.org/10.1103/PhysRevB.52.2995

    Article  CAS  Google Scholar 

  48. B. Ravel, M. Newville, ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005). https://doi.org/10.1107/S0909049505012719

    Article  CAS  Google Scholar 

  49. F.T. Johra, J.W. Lee, W.G. Jung, Facile and safe graphene preparation on solution-based platform. J. Ind. Eng. Chem. 20(5), 2883–2887 (2014). https://doi.org/10.1016/j.jiec.2013.11.022

    Article  CAS  Google Scholar 

  50. L. Zhang, P. Cai, Z. Wei, T. Liu, J. Yu, A.A. Al-Ghamdi, S. Wageh, Synthesis of reduced graphene oxide supported nickel-cobalt-layered double hydroxide nanosheets for supercapacitors. J. Colloid Interface Sci. (2020). https://doi.org/10.1016/j.jcis.2020.11.056

    Article  Google Scholar 

  51. M. Wang, Y. Zhao, X. Zhang, R. Qi, S. Shi, Z. Li, Q. Wang, Y. Zhao, Interface-rich core-shell ammonium nickel cobalt phosphate for high-performance aqueous hybrid energy storage device without a depressed power density. Electrochim. Acta. 272, 184–191 (2018). https://doi.org/10.1016/j.electacta.2018.04.005

    Article  CAS  Google Scholar 

  52. Z.H. Huang, T.Y. Liu, Y. Song, Y. Li, X.X. Liu, Balancing the electrical double layer capacitance and pseudocapacitance of hetero-atom doped carbon. Nanoscale 9, 13119–13127 (2017). https://doi.org/10.1039/c7nr04234e

    Article  CAS  Google Scholar 

  53. H. Chen, J. Jiang, L. Zhang, H. Wan, T. Qi, D. Xia, Highly conductive NiCo2S4 urchin-like nanostructures for high-rate pseudocapacitors. Nanoscale 5, 8879–8883 (2013). https://doi.org/10.1039/c3nr02958a

    Article  CAS  Google Scholar 

  54. S.K. Meher, G.R. Rao, Ultralayered Co3O4 for high-performance supercapacitor applications. J. Phys. Chem. C. 115, 15646–15654 (2011). https://doi.org/10.1021/jp201200e

    Article  CAS  Google Scholar 

  55. S. Kaipannan, S. Marappan, Fabrication of 9.6 V high-performance asymmetric supercapacitors stack based on nickel hexacyanoferrate-derived Ni(OH)2 nanosheets and bio-derived activated carbon. Sci. Rep. 9, 1–14 (2019). https://doi.org/10.1038/s41598-018-37566-8

    Article  CAS  Google Scholar 

  56. M. Boota, C. Chen, K.L. Van Aken, J. Jiang, Y. Gogotsi, Organic-inorganic all-pseudocapacitive asymmetric energy storage devices. Nano Energy 65, 104022 (2019). https://doi.org/10.1016/j.nanoen.2019.104022

    Article  CAS  Google Scholar 

  57. Y. Gogotsi, R.M. Penner, Energy storage in nanomaterials—capacitive, pseudocapacitive, or battery-like? ACS Nano 12, 2081–2083 (2018). https://doi.org/10.1021/acsnano.8b01914

    Article  CAS  Google Scholar 

  58. M.N. Patel, X. Wang, D.A. Slanac, D.A. Ferrer, S. Dai, K.P. Johnston, K.J. Stevenson, High pseudocapacitance of MnO2 nanoparticles in graphitic disordered mesoporous carbon at high scan rates. J. Mater. Chem. 22, 3160–3169 (2012). https://doi.org/10.1039/c1jm14513d

    Article  CAS  Google Scholar 

  59. G.A. Muller, J.B. Cook, H.S. Kim, S.H. Tolbert, B. Dunn, High performance pseudocapacitor based on 2D layered metal chalcogenide nanocrystals. Nano Lett. 15, 1911–1917 (2015). https://doi.org/10.1021/nl504764m

    Article  CAS  Google Scholar 

  60. V. Augustyn, P. Simon, B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. (2014). https://doi.org/10.1039/c3ee44164d

    Article  Google Scholar 

  61. C. Choi, D.S. Ashby, D.M. Butts, R.H. DeBlock, Q. Wei, J. Lau, B. Dunn, Achieving high energy density and high power density with pseudocapacitive materials. Nat. Rev. Mater. 5, 5–19 (2020). https://doi.org/10.1038/s41578-019-0142-z

    Article  Google Scholar 

  62. J. Wang, S. Dong, B. Ding, Y. Wang, X. Hao, H. Dou, Y. Xia, X. Zhang, Pseudocapacitive materials for electrochemical capacitors: from rational synthesis to capacitance optimization. Natl. Sci. Rev. 4, 71–90 (2017). https://doi.org/10.1093/nsr/nww072

    Article  CAS  Google Scholar 

  63. E.E. Miller, Y. Hua, F.H. Tezel, Materials for energy storage: review of electrode materials and methods of increasing capacitance for supercapacitors. J. Energy Storage 20, 30–40 (2018). https://doi.org/10.1016/j.est.2018.08.009

    Article  Google Scholar 

  64. Y. Zhu, X. Liu, S. Jin, H. Chen, W. Lee, M. Liu, Y. Chen, Anionic defect engineering of transition metal oxides for oxygen reduction and evolution reactions. J. Mater. Chem. A 7(11), 5875–5897 (2019). https://doi.org/10.1039/C8TA12477A

    Article  CAS  Google Scholar 

  65. Y. Shao, M.F. El-Kady, L.J. Wang, Q. Zhang, Y. Li, H. Wang, M.F. Mousavi, R.B. Kaner, Graphene-based materials for flexible supercapacitors. Chem. Soc. Rev. 44(11), 3639–3665 (2015). https://doi.org/10.1039/C4CS00316K

    Article  CAS  Google Scholar 

  66. B. Zhang, C. Yu, Z. Li, Enhancing the electrochemical properties of LaCoO3 by Sr-Doping, rGO-compounding with rational design for energy storage device. Nanoscale Res. Lett. 15(1), 1–13 (2020). https://doi.org/10.1186/s11671-020-03411-z

    Article  CAS  Google Scholar 

  67. G. Guo, K. Ouyang, J. Yu, Y. Liu, S. Feng, M. Wei, Facile synthesis of LaCoO3 with a high oxygen vacancy concentration by the plasma etching technique for high-performance oxygen ion intercalation pseudo capacitors. ACS Appl. Energy Mater. 3(1), 300–308 (2019). https://doi.org/10.1021/acsaem.9b01558

    Article  CAS  Google Scholar 

  68. X. Lang, H. Mo, X. Hu, H. Tian, Supercapacitor performance of perovskite La1− xSrxMnO3. Dalton Trans. 46(40), 13720–13730 (2017). https://doi.org/10.1039/C7DT03134C

    Article  CAS  Google Scholar 

  69. Z. Li, W. Zhang, H. Wang, B. Yang, Two-dimensional perovskite LaNiO3 nanosheets with hierarchical porous structure for high-rate capacitive energy storage. Electrochim. Acta 258, 561–570 (2017). https://doi.org/10.1016/j.electacta.2017.11.099

    Article  CAS  Google Scholar 

  70. Y. Cao, L. Baoping, S. Ying, Y. Hong, Z. Xueqin, Symmetric/asymmetric supercapacitor based on the perovskite-type lanthanum cobaltate nanofibers with Sr-substitution. Electrochim. Acta 178, 398–406 (2015). https://doi.org/10.1016/j.electacta.2015.08.033

    Article  CAS  Google Scholar 

  71. J. Huang, Diffusion impedance of electroactive materials, electrolytic solutions and porous electrodes: Warburg impedance and beyond. Electrochim. Acta 281, 170–188 (2018). https://doi.org/10.1016/j.electacta.2018.05.136

    Article  CAS  Google Scholar 

  72. T.Q. Nguyen, C. Breitkopf, Determination of diffusion coefficients using impedance spectroscopy data. J. Electrochem. Soc. 165(14), E826 (2018). https://doi.org/10.1149/2.1151814jes

    Article  CAS  Google Scholar 

  73. M. Oldenburger, B. Beduerftig, A. Gruhle, F. Grimsmann, E. Richter, R. Findeisen, A. Hintennach, Investigation of the low frequency Warburg impedance of Li-ion cells by frequency domain measurements. J. Energy Storage 21, 272–280 (2019). https://doi.org/10.1016/j.est.2018.11.029

    Article  Google Scholar 

Download references

Acknowledgements

The author (AKV1,2) is grateful to the Ministry of Education, Government of India for providing fellowship. The author (AK3) acknowledges the financial support of the Council of Scientific and Industrial Research (CSIR) [Grant No. 22(0778)/18/EMR-II], and Department of Science and Technology (DST) (Grant No. SR/FST/COLLEGE-/2020/997).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ashok Kumar or Ashavani Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vats, A.K., Kumar, A., Rajput, P. et al. Engineered perovskite LaCoO3/rGO nanocomposites for asymmetrical electrochemical supercapacitor application. J Mater Sci: Mater Electron 33, 2590–2606 (2022). https://doi.org/10.1007/s10854-021-07464-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07464-3

Navigation