Skip to main content

Advertisement

Log in

Low-temperature bonding of surface-activated polyimide to Cu Foil in Pt-catalyzed formic acid atmosphere

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, a two-step process involving oxygen plasma surface activation and thermos-compression in Pt-catalyzed formic acid gas was used to bond Cu foil and polyimide. The oxygen plasma was used to activate the polyimide surface to achieve strong adhesion with sputtered deposition film, and the Pt-catalyzed formic acid gas removed the oxides on the Cu surface effectively to promote bonding between Cu foil and polyimide. Via this method, a void-less bonding with a maximum shear strength of 20.31 MPa was achieved. The plasma bombardment was found to promote the formation of C-O-Cr and N-Cr bonds between polyimide and deposition metals, which improved their adhesion. After shear test, striped metal films remained on fracture surfaces at both polyimide and Cu foil sides, suggesting the fracture mainly occurred within adhered deposition metals rather than at bonding interface. This low-temperature bonding method is promising to achieve the direct integration between polyimide and copper foil without adhesive, which plays a key role in flexible device integration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y. Khan, M. Garg, Q. Gui, M. Schadt, A. Gaikwad, D. Han, N.A.D. Yamamoto, P. Hart, R. Welte, W. Wilson, S. Czarnecki, M. Poliks, Z. Jin, K. Ghose, F. Egitto, J. Turner, A.C. Arias, Adv. Funct. Mater 26, 47 (2016)

    Google Scholar 

  2. K. Matsuura, J. Liang, K. Maezawa, N. Shigekawa, IEEE Trans. Electron Devices 66, 9 (2019)

    Article  Google Scholar 

  3. T. Takano, H. Kudo, M. Tanaka, M. Akazawa, Y. Okazaki, H. Iida, K. Sakamoto, D. Kitayama, S. Yamada, S. Kuramochi, Int. Conf. Electron. Packag. Technol ICEPT 19, 2377 (2019)

    Google Scholar 

  4. R. Barrett, M. Faucon, J. Lopez, G. Cristobal, F. Destremaut, A. Dodge, P. Guillot, P. Laval, C. Masselon, J.-B. Salmon, Lab Chip 6, 494 (2006)

    Article  CAS  Google Scholar 

  5. B. Weinhausen, S. Köster, Lab Chip 13, 212 (2013)

    Article  CAS  Google Scholar 

  6. S.H. Kima, S.H. Choa, N.E. Leea, H.M. Kimb, Y.W. Namc, Y.H. Kimd, Surf Coat Technol 193, 101–106 (2005)

    Article  Google Scholar 

  7. M.M.R. Howlader, T. Watanabe, T. Suga, J. Vac. Sci. Technol. B 19, 2114 (2001)

    Article  CAS  Google Scholar 

  8. M.M.R. Howlader, T. Suga, A. Takahashi, J Mater Sci 40, 3177 (2005)

    Article  CAS  Google Scholar 

  9. J. Liang, T. Miyazaki, M. Morimoto, S. Nishida, N. Watanabe, N. Shigekawa, Appl. Phys. Express 6, 021801 (2013)

    Article  Google Scholar 

  10. A. Shigetou, T. Suga, Electronics Goes Green 2012, 1–6 (2012)

    Google Scholar 

  11. T. Suga, A. Takahashi, M. Howlader, K. Saijo and S. Oosawa (2002) IEEE Polytronic, 177–182

  12. J. Liang, K. Furuna, M. Matsubara, M. Dhamrin, Y. Nishio, N. Shigekawa, ECS J. Solid State Sci. Technol. 6, 626 (2017)

    Article  Google Scholar 

  13. Y. Nakamura, Y. Suzuki, Y, Watanabc, Thin Solid Flims 290, 367–369 (1996)

    Article  Google Scholar 

  14. S. Park, H. Lee, J Colloid Interface Sci 285, 267–272 (2005)

    Article  CAS  Google Scholar 

  15. T. Yang, D. Xie, Z. Li, H. Zhu, Mater. Sci. Eng., R 115, 1–37 (2017)

    Article  Google Scholar 

  16. W. Yang, Y. Lu, S. Tadatomo, Int (Conf. Electron. Packag. Technol, ICEPT, 2016), pp. 784–787

    Google Scholar 

  17. M. Fujino, M. Akaike, N. Matsuoka, T. Suga, Jpn J Appl Phys 56, 0401 (2017)

    Article  Google Scholar 

  18. Y.J. Kim, T.J. Byun, S.I. Kim, J.G. Han, J. Korean Phy. Soc. 53, 3 (2008)

    Google Scholar 

  19. S.B. Lee, Y.K. Kim, Plasma Process. Polym. 6, S525–S529 (2009)

    Article  CAS  Google Scholar 

  20. R. He, M. Fujino, M. Akaike, T. Sakai, S. Sakuyama, T. Suga, Appl Surf Sci 414, 163–170 (2017)

    Article  CAS  Google Scholar 

  21. A.M. Ektessabi, U.S. Hakamata, Thin Solid Films 377, 621 (2000)

    Article  Google Scholar 

  22. K. Yamanaka, H. Yugawa, M. Harazono, Y. Hosoi, M. Fukui, N. Inagaki, IEEE Trans Compon Packaging Manuf Technol 1, 5 (2011)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Natural Science Foundation of China under Grant Nos. 62004213, 61527816, 11634002, 61631021, 62074161, 61822407, and U20A20208; in part by the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (CAS) under Grant No. QYZDB-SSW-JSC012; in part by the Youth Innovation Promotion Association of CAS; in part by the University of CAS; and in part by the Opening Project of Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, CAS.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Runhua Gao or Fengwen Mu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, Y., Xu, Y., Gao, R. et al. Low-temperature bonding of surface-activated polyimide to Cu Foil in Pt-catalyzed formic acid atmosphere. J Mater Sci: Mater Electron 33, 2582–2589 (2022). https://doi.org/10.1007/s10854-021-07463-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07463-4

Navigation